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1 Introduction
1.1 Motivation
Varieties play a major role in algebraic geometry. They are defined as the zero set of a collection of poly-
nomials. Geometrically, this corresponds to the locus drawn out by the polynomials. Since varieties bear
similarity to manifolds in the sense that there is interplay between algebra and geometry, it would be
nice to collect some useful techniques from manifolds and apply it to varieties. One such notion is that
of differential forms.

Formally, smooth differential 1-forms are smooth sections of the cotangent bundle. In other words, there
is a smooth assignment of cotangent vectors for each point of the manifold. One can think of smooth
differential 1-forms as a “differential operator” for functions on the manifolds. For the construction of
1-forms on varieties, we will mimic the more algebraic approach of thinking of differential forms as op-
erators instead of the geometric picture of assigning cotangent vectors, even though there is indeed a
notion of tangent space for varieties in textbooks such as [Sha12] and [SKKT00].

The resulting construct is a module, called the module of differential forms. In particular, it is universal
in the sense that any other “differential operators” (called derivations in our case) factors through the
module.

1.2 Preliminaries
The essay will make use of homological algebra / commutative algebra while developing themachinery.
Since our motivation of the module comes from the cotangent bundle in manifolds, some basic knowl-
edge on manifolds and varieties are needed, specifically that of tangent and cotangent spaces. Useful
background knowledge onmodules has been given a dedicated section in the appendix. While other ref-
erences of commutative algebra and homological algebra can be found in [Eis07], [AM94] and [DF10].
As for the theory of manifolds and varieties, [Tu10] and [Sha12] respectively will suffice.

1.3 Objectives
The goal of this essay is to serve as an expository to basic results concerning the module of Kähler dif-
ferentials. We will also see how good this cotangent bundle for varieties mimic that of manifolds. Some
examples will also be illustrated showing that the module of Kähler differentials can be used to recover
the cotangent space of the variety of a point, albeit somewhat convoluted.

Specifically, the second chapter delves into the heart of the essay: Derivations and the module of Kähler
Differentials, as well as developing basic machinery to calculate the module such as the two exact se-
quences. The third chapter is a showcase / discussion of applications of the module. We will also see a
construction of the module of Kähler differentials on coordinate rings. In the fourth and final chapter,
we compare the module of Kähler Differentials with that of manifolds, and show that while it fails to
become the “same” construct, we can still recover the cotangent space of varieties as classically defined
in standard algebraic geometry textbooks.
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2 Kähler Differentials
The goal of this section is to define the derivations and the module of Kähler differentials, as well as
seeing some of its first consequences such as the two exact sequences. To show the existence of the
module of Kähler differentials, we will see two different constructions of the module and then exhibit
that they both satisfy the universal property.

2.1 Derivations
We begin with the definition of derivations. It will serve as the base of our discussions not only for the
module of Kähler differentials, but also for manifolds.

By a ring, we mean that it is a commutative ring with identity 1 ̸= 0.
Definition 2.1.1 (Derivations). Let A be a ring and B an A-algebra. Let M be a B-module. An A-
derivation of B intoM is an A-module homomorphism d : B →M such that the Leibniz rule holds:

d(b1b2) = b1d(b2) + d(b1)b2

for b1, b2 ∈ B. Denote the set of all A-derivations from B toM by
DerA(B,M) = {d : B →M | d is an A derivation }

This is reminiscent of properties of a derivative. Indeed, from the above definition, take A = R and
B = M = R[x1, . . . , xn]. Then the formal partial derivatives ∂

∂xi
: R[x1, . . . , xn] → R[x1, . . . , xn] defined

by f(x) = ∑
k1,...,kn

ak1,...,knx
k1
1 · · ·xkii · · ·xknn

 7→

 ∂f

∂xi
=

∑
k1,...,kn

ak1,...,knkix
k1
1 · · ·xki−1

i · · ·xknn


(provided ki ≥ 1, otherwise the derivative is zero on that term) isR-linear and satisfies the Leibniz rule.
These are the two fundamental properties that a derivative should possess.

Recall that derivatives in calculus also satisfy the quotient rule and the fact that constant maps have zero
derivatives. Instead of enforcing these requirements on the definition, we can show that the they can be
derived from the consequences of d being linear and that it satisfies the Leibniz rule.
Lemma 2.1.2. Let A be a ring and B an A-algebra LetM be a B-module. Let d : B → M be an A-derivation.
Then d(a) = 0 for all a ∈ A.

Proof. Since d : B →M is an A-module homomorphism, d(a · 1) = a · d(1). We also have, by the Leibniz
rule that d(1) = 1 · d(1) + d(1) · 1 = 2d(1) which implies d(1) = 0. Thus d(a · 1) = a · d(1) = 0.
The quotient rule is not so well defined in a general algebra. Indeed a ring does not necessarily have
the notion of division and fractions. However recall that there is a systematic way of creating quotient
elements in a ring. This is called localization.
Proposition 2.1.3. LetB be anA-algebra. Let S be a multiplicative set ofB. LetM be an S−1(B)-module. Then
for any A-derivation d : B → M , there exists one unique way of extending the derivation to d : S−1B → M ,
defined by the formula:

d

(
b

s

)
=
sd(b)− bd(s)

s2

Proof. Temporarily denote a derivation from S−1B toM by D. Suppose that b ∈ B and s ∈ S. Notice
that D has to satisfy the following:

d(b) = D(b) = D

(
s
b

s

)
=
b

s
D(s) + sD

(
b

s

)
Now multiply both sides by s−1 to obtain

D

(
b

s

)
=
sD(b)− bD(s)

s2
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Thus any A-derivation S−1B to M must satisfy the above formula. This shows that there can only be
one unique way of extending it.

For existence, we just have to show that it is a well defined map. Suppose that ar = b
s . This means that

there exists q ∈ S such that q(sa− rb) = 0. The goal is to show that

rd(a)− ad(r)

r2
=
sd(b)− bd(s)

s2

or in other words, there exists p ∈ S such that p (s2(rd(a)− ad(r))− r2sd(b)− bd(s)
)
= 0. I claim that

p = q2 does the job. Indeed we have that

q2
(
s2(rd(a)− ad(r))− r2sd(b)− bd(s)

)
= q2(sad(rs)− rsd(as)− rbd(rs) + rsd(br))

= q2((sa− rb)d(rs) + rs(d(br − as)))

= rsq2d(br − as)

Now in fact, q2d(br − as) = 0 because

q2d(br − as) = q(qd(br − as))

= q(d(q(br − as))− (br − as)d(q))

= 0

Thus we conclude.
We can see that DerR(R[x1, . . . , xn],R[x1, . . . , xn]) has more than just the standard partial derivatives
from the module structure. For examples, the sum of partial derivatives

∂

∂xi
+

∂

∂xj
: R[x1, . . . , xn] → R[x1, . . . , xn]

defined by f 7→ ∂f
∂xi

+ ∂f
∂xj

. This is because of the extra structure of DerA(B,M) as a B-module.

Lemma 2.1.4. Let A be a ring and B an A-algebra. Let M be a B-module. Then DerA(B,M) is a B-module
with the following operations:

• Addition is defined by sending d1, d2 : B →M to (d1 + d2) : B →M that maps b to d1(b) + d2(b).

• The identity is given by the zero map 0 : B →M given by b 7→ 0M .

• Left action is defined by · : B × DerA(B,M) → DerA(B,M) that sends b ∈ B and d : B → M to
(bd) : B →M defined by u 7→ b · d(u).

Proof. Firstly, DerA(B,M) is an abelian group. We check the group axioms.
• Closure: Let a ∈ A and b1, b2 ∈ B. d1 + d2 : B →M is an A-module homomorphism because

(d1 + d2)(ab1 + b2) = d1(ab1 + b2) + d2(ab1 + b2)

= ad1(b1) + d1(b2) + ad2(b1) + d2(b2)

= a(d1 + d2)(b1) + (d1 + d2)(b2)

Finally, the Leibniz rule is satisfied because

(d1 + d2)(b1b2) = d1(b1b2) + d2(b1b2)

= b1d1(b2) + d1(b1)b2 + b1d2(b2) + d2(b1)b2

= b1(d1 + d2)(b2) + (d1 + d2)(b1)b2

• Associativity: Follows from the fact thatM is a group
• Identity: The zero map is the identity since for any d : B →M , d+ 0 : B →M sends b to d(b) and

thus d+ 0 = d.
• Inverse: For each d : B →M the maps sending b to −d(b) is an inverse
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• Abelian: Follows from the fact thatM is abelian.
Finally, left action is defined by · : B ×DerA(B,M) → DerA(B,M) that sends b ∈ B and d : B → M to
(bd) : B →M defined by u 7→ b · d(u). Associativity and identity is clear.
However, second order derivatives (which are compositions of the first order partial derivatives) are not
derivations! Indeed they satisfy not the Leibniz property but instead, we have that

∂(fg)

∂xixj
=

∂

∂xi

(
∂f

∂xj
g + f

∂g

∂xj

)
=

∂2f

∂xixj
+

∂f

∂xj

∂g

∂xi
+
∂f

∂xi

∂g

∂xj
+

∂2g

∂xixj

which is in general a more complicated identity than the Leibniz rule.

2.2 Kähler Differentials
We now define the module of Kähler Differentials which is the main object of study. For each A-
derivation d from an A-algebra B to a B-module M , d factors through a universal object no matter
what dwe choose. This is the content of the following definition.
Definition 2.2.1. Kähler Differentials Let A be a ring and let B be an A-algebra. A B-module Ω1

B/A to-
gether with an A-derivation d : B → Ω1

B/A is said to be a module Kähler Differentials of B over A if it
satisfies the following universal property:

For any B-module M , and for any A-derivation d′ : B → M , there exists a unique B-module homo-
morphism f : Ω1

B/A →M such that d′ = f ◦ d. In other words, the following diagram commutes:
B Ω1

B/A

M

d

d′
∃!f

The following lemma restates the universal property in a more categorical way.
Lemma 2.2.2. Let A be a ring and B an A-algebra. LetM be a B-module. Then there is a canonical B-module
isomorphism

HomB(Ω1
B/A,M) ∼= DerA(B,M)

defined via the universal property of the module of Kähler Differentials.

Proof. Fix M a B-module. Let d′ ∈ DerA(B,M). By the universal property of Ω1
B/A(M), there ex-

ists a unique B-module homomorphism f : Ω1
B/A → M such that d′ = f ◦ d. This gives a map

ϕ : DerA(B,M) → HomB(Ω
1
B/A,M) defined by ϕ(d′) = f .

Conversely, given a map g ∈ HomB(Ω
1
B/A,M), pre-composition with d gives a pull back map d∗ :

HomB(Ω
1
B/A,M) → DerA(B,M) defined by d∗(g) = g ◦ d. These map are inverses of each other:

(d∗ ◦ ϕ)(d′) = d∗(f)

= f ◦ d
= d′ (By universal property)

and (ϕ ◦ d∗)(g) = ϕ(g ◦ d) = g. Thus these map is a bijective map of sets.

It remains to show that d∗ is a B-module homomorphism. Let f, g ∈ HomB(Ω
1
B/A,M).

• d∗(f + g) = (f + g) ◦ d is a map

b
d7→ d(b)

f+g7→ f(d(b)) + g(d(b))

for b ∈ B. d∗(f) + d∗(g) = f ◦ d+ g ◦ d is a map

b 7→ f(d(b)) + g(d(b))

thus addition is preserved by d∗.
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• Let u ∈ B. We want to show that d∗(u · f) = u · d∗(f). The left hand side sends an element b ∈ B
by

b
d7→ d(b)

u·f7→ u · f(d(b))

The right hand side sends b 7→ u · f(d(b)). Thus proving they are the same.
And so we have reached the conclusion.
As any category theorist will realize, this is almost the same saying the functor DerA(B,−) : BMod →
BMod is representable via the module of Kähler Differentials. But of course we neither demonstrated
that DerA(B,−) is a functor, nor the fact that the above isomorphism is natural inM . For our purposes,
the above lemma and its content will suffice.

As always, such a definition via the universal property does not show the existence of Ω1
B/A for any

appropriate choice of A, B. In the following, we shall demonstrate two different constructions of the
module with two different purposes.
Proposition 2.2.3. Let A be a ring and B be an A-algebra. Let F be the free B-module generated by the symbols
{d(b) | b ∈ B}. Let R be the submodule of F generated by the following relations:

• d(a1b1 + a2b2)− a1d(b1)− a2d(b2) for all b1, b2 ∈ B and a1, a2 ∈ A

• d(b1b2)− b1d(b2)− b2d(b1) for all b1, b2 ∈ B

Then F/R is a module of Kähler Differentials for B over A.

Proof. Clearly F/R is a B-module. Moreover, define d : B → F/R by b 7→ d(b) + R. This map is an
A-derivation since the following are satisfied:

• d is an A-module homomorphism: Let b1, b2 ∈ B and a1, a2 ∈ A. Then a1b1 + a2b2 is mapped to
d(a1b1 + a2b2) +R. We know from the relations that d(a1b1 + a2b2) +R = a1d(b1) + a2d(b2) +R.
Thus d is A-linear.

• d satisfies the Leibniz rule: Let b1, b2 ∈ B. Then b1b2 is mapped to d(b1b2)+R. Since d(b1b2)+R =
b1d(b2) + d(b1)b2, we have that b1b2 is mapped to b1d(b2) + d(b1)b2 +R.

This shows that d : B → F/R is an A derivation.

It remains to show that (F/R, d) has the universal property. LetM be a B-module and d′ : B → M an
A-derivation. Define a map f : F →M on generators by d(b) 7→ d′(b) and extending from generators to
the entire module. This is a B-module homomorphism by definition. Clearly f ◦ d = d′. It also unique
since f is defined on the generators of F .

Finally wewant to show that f projects to a map f̄ : F/R→M . This requires us to check that f(d(a1b1+
a2b2)) = f(a1d(b1) + a2d(b2)) and f(d(b1b2)) = f(b1d(b2) + d(b1)b2). But this is clear. Since f : F → R is
a B-module homomorphism, we have

f(d(a1b1 + a2b2))− f(a1d(b1) + a2d(b2)) = 0

and
f(d(b1b2))− f(b1d(b2) + d(b1)b2) = 0

implying f sends d(a1b1+a2b2)−a1d(b1)−a2d(b2) and d(b1b2)−b1d(b2)−d(b1)b2 to 0. Since we checked
them on generators of R this result extends to all of R. Thus we are done.
Aside from the construction through quotients, we can also express the module explicitly via the kernel
of a diagonal morphism. Using the universal property, we see that all these constructions are the same.
Proposition 2.2.4. Let A be a ring and B be an A-algebra. Let f : B ⊗A B → B be a function defined to be
f(b1⊗A b2) = b1b2. Let I be the kernel of f . Then (I/I2, d) is a module of Kähler Differentials ofB overA, where
the derivation is the homomorphism d : B → I/I2 defined by db = 1⊗ b− b⊗ 1 (mod I2).
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Proof. We break down the proof in 3 main steps.
Step 1: Show that ker(f) = ⟨1⊗ b− b⊗ 1 | b ∈ B⟩.
Write I = ⟨1⊗ b− b⊗ 1 | b ∈ B⟩. For any generator 1⊗ b− b⊗ 1 of I , we see that

f(1⊗ b− b⊗ 1) = 0

Thus I ⊆ ker(f). Now suppose that∑i,j bi ⊗ bj ∈ ker(f). Then using the identity
bi ⊗ bj = bibj ⊗ 1 + (bi ⊗ 1)(1⊗ bj − bj ⊗ 1)

and the fact that bibj = 0 (because 0 = f(bi ⊗ bj) = bibj) we see that∑
i,j

bi ⊗ bj =
∑
i,j

(bi ⊗ 1)(1⊗ bj − bj ⊗ 1)

Since each 1⊗ bj − bj ⊗ 1 lies in ker(f), we conclude that∑i,j bi ⊗ bj so that I = ker(f).
Step 2: Check that d : B → I/I2 is an A-derivation.

• d : B → I/I2 is an A-module homomorphism: Let a1a2 ∈ A and b1, b2 ∈ B. Then we have
d(a1b1 + a2b2) = 1⊗ (a1b2 + a2b2)− (a1b2 + a2b2)⊗ 1 + I2

= a1(1⊗ b1) + a2(1⊗ b2)− a1(b1 ⊗ 1)− a2(b2 ⊗ 1) + I2

= a1d(b1b2) + a2d(b1b2) + I2

Thus we are done. (Notice that we did not use the fact that all the expressions are taken modulo
I2)

• d satisfies the Leibniz rule: Let b1, b2 ∈ B. Then we have d(b1b2) = 1⊗ b1b2 − b1b2 ⊗ 1 + I2 on one
hand. On the other hand we have

b1d(b2) + b2d(b1) = b1(1⊗ b2 − b2 ⊗ 1) + b2(1⊗ b1 − b1 ⊗ 1) + I2

Subtracting them gives
d(b1b2)− b1d(b2)− b2d(b1) = 1⊗ b1b2 − b1 ⊗ b2 − b2 ⊗ b1 + b2b1 ⊗ 1

= (1⊗ b1 − b1 ⊗ 1)(1⊗ b2 − b2 ⊗ 1) + I2

But (1⊗ b1 − b1 ⊗ 1)(1⊗ b2 − b2 ⊗ 1) lies in I2 thus subtraction gives 0.
Thus d is an A-derivation.

Step 3: Show that the universal property is satisfied.
LetM be a B-module and d′ : B →M an A-derivation. We want to find a unique ϕ̃ : B →M such that
d′ = ϕ̃ ◦ d.

Step 3.1: Construct a homomorphism of A-algebra from B ⊗B to B ⋉M
Define ϕ : B ⊗B → B ⋉M (Refer to 7.1.7 for definition of B ⋉M) by

ϕ(b1 ⊗ b2) = (b1b2, b1d
′(b2))

and extend it linearly so that ϕ(b1 ⊗ b2 + b3 ⊗ b4) = ϕ(b1 ⊗ b2) + ϕ(b3 ⊗ b4). This is a homomorphism of
A-algebra since

• Addition is preserved: This is by definition.
• ϕ(ab1 ⊗ b2) = ϕ(b1 ⊗ ab2) = aϕ(b1 ⊗ b2): Let a ∈ A and b1 ⊗ b2 ∈ B ⊗A B. Then

ϕ(ab1 ⊗ b2) = (ab1b2, ab1d
′(b2))

= a · ϕ(b1 ⊗ b2)

ϕ(b1 ⊗ ab2) = (ab1b2, b1d
′(ab2))

= (ab1b2, ab1d
′(b2))

Thus we are done.
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• Product is preserved: For u1, u2, v1, v2 ∈ B, we have

ϕ((u1 ⊗ u2) · ϕ(v1 ⊗ v2)) = (u1u2, u1d
′(u2)) · (v1v2, v1d′(v2))

= (u1u2v1v2, u1u2v1d
′(v2) + v1v2u1d

′(u2))

= (u1v1u2v2, u1v1d
′(u2v2))

= ϕ(u1v1 ⊗ u2v2)

Thus ϕ is a homomorphism of A-algebra.

Step 3.2: Construct ϕ̃ from ϕ.
Since ϕ is a map B ⊗ B to B ⋉M , we can restrict this map to I a result in a new map ϕ̄ : I → B ⋉M .
Notice that for 1⊗ b− b⊗ 1 a generator of I , we have

ϕ̄(1⊗ b− b⊗ 1) = ϕ̄(1⊗ b)− ϕ̄(b⊗ 1)

= (b, d′(b))− (b, d′(1))

= (b, d′(b))− (b, 0)

= (0, d′(b))

Thus we actually have a map ϕ̄ : I →M . Finally, notice that for (1⊗u−u⊗ 1)(1⊗ v− v⊗ 1) a generator
of I2, we have

ϕ̄(x) = ϕ(1⊗ u− u⊗ 1)ϕ(1⊗ v − v ⊗ 1)

=
∑

(0, d′(u))(0, d′(v))

=
∑

(0, 0) (Mult. in Trivial Extension)
= (0, 0)

which shows ϕ̄ kills of I2 and thus ϕ̄ factors through I/I2 so that we get a map ϕ̃ : I/I2 →M .

Step 3.3: Show that ϕ̃ satisfies all the required properties.
For b ∈ B, we have that

ϕ̃(d(b)) = ϕ̃(1⊗ b− b⊗ 1 + I2) = d′(b)

and thus d′ = ϕ̃ ◦ d. Moreover, this map is unique since it is defined on the generators of I , namely the
d(b) for b ∈ B.

This concludes the proof.
Materials referenced: [Vak22], [Kun86], [Mat80]
Despite being a more convoluted way to construct the module of Kähler Differentials, it turns out that
the advantage of this construction is that it generalizes well to the theory of schemes. Interested readers
are referred to [Har77].

Our first step towards computing the module of Kähler Differentials for coordinate rings comes from a
computation of the polynomial ring.
Lemma 2.2.5. Let A be a ring and B = A[x1, . . . , xn] so that B is an A-algebra. Then

Ω1
B/A

∼=
n⊕
i=1

Bd(xi)

In particular, the module Ω1
B/A is a finitely generated B-module.

Proof. The fact that Ω1
B/A is finitely generated directly follows from the claimed isomorphism. So let us

prove the isomorphism. Consider the map p : B →
⊕n

k=1Bd(xk) given by

f 7→
(
∂f

∂x1
d(x1), . . . ,

∂f

∂xn
d(xn)

)

9
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where each partial derivative here is the formal derivative of f with respect to the variable. Now that by
choosing the function xk ∈ B, we have p(xk) = (0, . . . , 0, d(xk), 0, . . . , 0). Since each partial derivative is
B-linear and satisfies the Leibniz rule, the universal property of Ω1

B/A implies that there exists a unique
B-linear map ϕ : Ω1

B/A →
⊕n

k=1Bd(xk) that satisfies p = ϕ ◦ d.

I claim that the map ψ :
⊕n

k=1Bd(xk) → Ω1
B/A defined by

(g1, . . . , gn) 7→
n∑
k=1

gkd(xk)

is the inverse of ϕ. Notice that this makes sense because here we think of Ω1
B/A as being generated by

d(b) for all b ∈ B. It is evident that this map is B-linear. Now we have that

ϕ(ψ(g1d(x1), . . . , gnd(xn))) = ϕ

(
n∑
k=1

gkd(xk)

)

=

n∑
k=1

gkϕ(d(xk)) (ϕ is B-linear)

=

n∑
k=1

gkp(xk)

=

n∑
k=1

gk(0, . . . , 0, d(xk), . . . , 0, . . . , 0)

= (g1d(x1), . . . , gnd(xn))

Now sinceΩ1
B/A is generated by the symbols d(f), an arbitrary element ofΩ1

B/A is given by∑n
k=1 ukd(fk)

for some uk, fk ∈ B. Since ϕ and ψ areB-linear, it suffices to prove that ψ(ϕ(d(f))) = d(f). We have that
ψ(ϕ(d(f))) = ψ(p(f))

= ψ

(
∂f

∂x1
d(x1), . . . ,

∂f

∂xn
d(xn)

)
=

n∑
k=1

∂f

∂xk
d(xk)

The problem remains to show that d(f) =
∑n
k=1

∂f
∂xk

d(xk). But this formula is true because d is B-
linear and satisfies the Leibniz rule. Thus ϕ and ψ are mutual inverses so that we obtain the desired
isomorphism. Materials referenced: [Eis07], [Pro11], [GW23]
Notice that throughout all of our definitions, there is not a single place where we have to define genuine
limits similar to that in analysis or calculus. Instead, we start with some algebraic objects such as rings,
algebras andmodule, bestowedmaps between themwithR-linearity and Leibniz rule, andwe ended up
in a situation in analysis / calculus. it shows thatwe have captured the algebraic properties of derivatives
in the sense of calculus and are able to reproduce it here.

2.3 Transfering the System of Differentials
This section aims to develop the necessary machinery in order to compute the module of Kähler Dif-
ferentials for coordinate rings. We will see explicit calculation of the cuspidal cubic, an ellipse and the
double cone to demonstrate how the two exact sequences can be used along with the Jacobian of the
defining equations of the variety to compute the module of Kähler Differentials.
Theorem 2.3.1. First Exact Sequence LetB,C beA-algebras and let ϕ : B → C be anA-algebra homomorphism.
Then the following sequence is an exact sequence of C-modules:

Ω1
B/A ⊗B C Ω1

C/A Ω1
C/B 0

f g

where f and g is defined respectively as

f(dB/A(b)⊗ c) = c · dC/A(ϕ(b))

10
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and
g(dC/A(c)) = dC/B(c)

and extended linearly.

Proof. Denote dB/A, dC/A, dC/B the derivations for Ω1
B/A,Ω

1
C/A,Ω

1
C/B respectively. Clearly g is surjec-

tive since for any c1dC/B(c2) ∈ Ω1
C/B , just choose c1dC/A(c2) ∈ Ω1

C/A. We just have to show that
ker(g) = im(f). It is enough to show that

0 HomC(Ω
1
C/B , N) HomC(Ω

1
C/A, N) HomC(Ω

1
B/A ⊗B C,N)

g∗ f∗

is exact by 7.1.2. Using the fact that HomC(Ω
1
B/A ⊗B C,N) ∼= HomB(Ω

1
B/A, N) (7.1.3) and the fact that

Hom(Ω1
B/A, N) ∼= DerA(B,N), we obtain the following commutative diagram:

0 HomC(Ω
1
C/B , N) HomC(Ω

1
C/A, N) HomC(Ω

1
B/A ⊗B C,N)

HomB(Ω
1
B/A, N)

0 DerB(C,N) DerA(C,N) DerA(B,N)

g∗ f∗

∼=

∼=

∼=

∼=

u v

where u and v are obtained by going along the appropriate commutative squares. Now explicitly, we
have the following:

• The map u is actually an inclusion. To see this, let us trace an element h ∈ DerA(C,N). Under
the far left vertical isomorphism, h is send to the unique map η : Ω1

C/BtoN such that h = η ◦
dC/B . Precomposing with g∗ gives the map η ◦ g : Ω1

C/A → N . Then under the middle vertical
isomorphism, we obtain a unique map k : C → N such that k = (η ◦ g) ◦ dC/A. But notice that

k = η ◦ (g ◦ dC/A) = η ◦ dC/B = h

so k = h and u is indeed an inclusion.
• The map v is actually a restriction of scalars. To see this, let us trace an element y ∈ DerA(C,N).

Under the middle vertical isomorphism, y is sent to the unique map ψ : Ω1
C/A → N such that

y = ψ ◦ dC/A. Precomposing with f∗ gives the map ψ ◦ f : Ω1
B/A ⊗B C → N . Under the top right

isomorphism, we notice that we can think of it as there is aB-linear inclusion ι : Ω1
B/A ↪→ Ω1

B/A⊗C
defined by d(b) 7→ d(b) ⊗ 1C . Let us the latter approach. Because ι is B-linear, the map ψ ◦ f ◦ ι
is also B-linear. By the universal property of Ω1

B/A, we obtain a unique map z : B → N such that
z = ψ ◦ f ◦ ι ◦ dB/A. I claim that the following diagram (consider all module homomorphisms as
B-linear) commutes:

B Ω1
B/A Ω1

B/A ⊗ C

C Ω1
C/A

N

dB/A

ϕ

ι

∃!ϵ f

dC/A

y
∃!ψ

Now the top left and bottom right triangles commute by the universal property of the module
of Kähler Differentials. Let dB/A(b) ∈ Ω1

B/A. On one hand we have that (dC/A ◦ ϵ)(dB/A(b)) =

dC/A(ϕ(b)) = f(dB/A(b) ⊗ 1C). On the other hand we have that f(ι(dB/A(b))) = f(dB/A(b) ⊗ 1C)
and so the top right square commutes. Thus the diagram commutes. Now I want to show that
z = y ◦ ϕ. Now this is why maths is beautiful:

z = ψ ◦ f ◦ ι ◦ dB/A = ψ ◦ dC/A ◦ ϵ ◦ dB/A = ψ ◦ dC/A ◦ ϕ = y ◦ ϕ

This shows that the map v sending y to z = y ◦ ϕ is indeed a restriction of scalars!

11
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Now let h ∈ im(u). Then h is B-linear (u is just an inclusion). Thus im(u) ⊆ ker(v). Now let y ∈ ker(v).
Then y ◦ϕ = 0 (v is just a restriction). I claim that y isB-linear. This is done by considering the structure
of C as a B-module. The module structure · : B × C → C is given by b · c = ϕ(b)c and this is similar for
N . So we have

y(b · c) = y(ϕ(b)c) = y(ϕ(b))c+ ϕ(b)y(c) = ϕ(b)y(c) = b · y(c)

Thus y is B-linear. We conclude that im(u) = ker(v) so that the first exact sequence is indeed exact.
Theorem 2.3.2. Second Exact Sequence LetA be a ring andB anA-algebra. Let I be an ideal ofB andC = B/I .
Then the following sequence is an exact sequence of C-modules:

I/I2 Ω1
B/A ⊗B C Ω1

C/A 0
δ f

where δ and f is defined respectively as
δ(i+ I2) = d(i)⊗ 1

and
f(d(b)⊗ c) = c · d(ϕ(b))

and then extended linearly.

Proof. Notice that δ is well defined. Indeed, if i + I2 = j + I2, then there exists h1, h2 ∈ I such that
i− j = h1h2. Now we have that

δ(i− j) = d(h1h2)⊗ 1

= h1d(h2)⊗ 1 + h2d(h1)⊗ 1

= d(h2)⊗ h1 + I + d(h1)⊗ h2 + I

= d(h2)⊗ 0 + d(h1)⊗ 0

= 0

We can see that f is surjective. Indeed for any d(b+ I) ∈ Ω1
C/A, just choose d(b)⊗ 1 ∈ Ω1

B/A ⊗B C. Then
f(d(b)⊗ 1) = d(b+ I).

It remains to show that im(δ) = ker(f). Notice that to prove the exactness of the sequence in question,
we just have to show the exactness of the following sequence (by 7.1.2):

0 HomC(Ω
1
C/A, N) HomC(Ω

1
B/A ⊗B B

I ) HomC(I/I
2, N)

f∗
δ∗

Using the fact that I/I2 ∼= I ⊗B B
I (by 7.1.4) and HomC(Ω

1
B/A⊗B B/I,N) = HomB(Ω

1
B/A, N) (by 7.1.3)

we can transform this sequence into
0 HomC(Ω

1
C/A, N) HomC(Ω

1
B/A ⊗B B

I , N) HomC(
I
I2 , N)

HomB(Ω
1
B/A, N) HomC(I ⊗B B

I , N)

HomB(I,N)

0 DerA(C,N) DerA(B,N) DerA(I,N)

f∗
δ∗

∼= ∼=

∼=

∼=

∼=

∼=

v w

We need to show exactness between onHomB(Ω
1
B/A, N). u and v here are the given by their correspond-

ing commuting squares. Explicitly, we have that
• Since this sequence is derived directly from the first exact sequence, we note that the map v is

exactly the map v in the proof of the first exact sequence. Hence v is just a restriction of scalars.
• By employing the same strategy, one can show that the map w is also a restriction of scalars from
B to I .

Nowwewant to show that im(v) = ker(w). Let h ∈ im(v). Then there exists h̄ ∈ DerA(B/I,N) such that
h = h̄ ◦ p. Now w(h) = h ◦ ι = h̄ ◦ p ◦ ι where ι : I → B is the inclusion. We have that p ◦ ι is the 0 map
hence w(h) = 0 and so im(v) ⊆ ker(w). Now let y ∈ ker(w). Then y(i) = 0 for all i ∈ I . By the universal

12
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property of quotients, there exists a unique map ȳ : B/I → N such that y = ȳ ◦ p. Thus y ∈ im(v). We
conclude that im(v) = ker(w).
A very nice application towards computing the module of differential forms is given by the second exact
sequence. For B = A[x1, . . . , xn] and C = B

I=(f1,...,fr)
, we can use 7.1.5 and 2.2.5 to see that Ω1

B/A ⊗ C ∼=⊕n
i=1 Cdxi. By the second exact sequence 2.3.2, we see that

Ω1
C/A

∼= coker
(
I

I2
→

n⊕
i=1

Cdxi

)

Since I/I2 is a C-module, by 7.1.6 there exists a surjective map⊕m
i=1 Cdei ↠ I/I2. In fact m = r since

I is finitely generated by f1, . . . , fr and thus the map sends ei to fi for 1 ≤ i ≤ r.

Now consider the map
J :

r⊕
i=1

Cdei ↠
I

I2
→

n⊕
i=1

Cdxi

This is a map from a free module of rank r to a free module of rank n. So we can write this in an n × r

matrix. Since the map I/I2 →
⊕n

i=1 Cdxi sends fi to d(fi) =
∑n
k=1

∂fi
∂xk

dxk (by second exact sequence
2.3.2) and ei is sent fi, we have that J is the matrix

∂f1
∂x1

· · · ∂fr
∂x1... . . . ...

∂f1
∂xn

· · · ∂fr
∂xn



Finally, since im(A↠ B → C) = im(B → C), we thus have

coker(J) ∼= Ω1
C/A

which means that Ω1
C/A is just the cokernel of the matrix. This exposition can be found in [Eis07].

This leads to our first calculations of the module of Kähler Differentials.
Example 2.3.3. Cuspidal Cubic: Part 1 Write V = V(y2 − x3) ⊆ A2

C the vanishing locus of the cuspidal
cubic. Then the module of Kähler differentials Ω1

C[V ]/C can be calculated using the above method of the

cokernel. An easy calculation shows that J is thematrix
(
−3x2

2y

)
. So the image of J is (−3x2)dx⊕(2y)dy

and thus
Ω1

C[V ]/C
∼=

C[V ]dx⊕ C[V ]dy

((−3x2)dx⊕ (2y)dy)

Example 2.3.4. Ellipse: Part 1 Write W = V(4x2 + 9y2 − 36) ⊆ A2
C the vanishing locus of the ellipse.

Similar to the previous example, it is easy to see that

Ω1
(C[W ])/C

∼=
C[W ]dx⊕ C[W ]dy

((8x)dx⊕ (18y)dy)

Example 2.3.5. The Double Cone: Part 1 Write U = V(x2 + y2 − z2) ⊂ A3
C for the vanishing locus of the

double cone. Again we can show that

Ω1
C[U ]/C

∼=
C[U ]dx⊕ C[U ]dy ⊕ C[U ]dz

(2xdx⊕ 2ydy ⊕−2zdz)

using the fact that the Jacobian matrix of the equation of the double cone is given by

J =
(
2x 2y (−2z)

)T

13
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3 Applications of the Module of Kähler Differentials
3.1 Characterization for Separability
Recall that we say that a field F/K is separable if the minimal polynomial of all α ∈ K has no repeated
roots in any splitting fields. There is also a close connection between separability and formal derivatives
because by taking derivatives we can detect whether a root has multiplicity ≥ 2.

The module of Kähler differentials give a necessary and sufficient condition for a finite extension to be
separable. But before the main proposition, we will need a lemma.
Lemma 3.1.1. Let L/K be a finite field extension and Ω1

L/K the module of Kähler Differentials. Let f(b) =

c0 + c1b+ · · ·+ cnb
n ∈ L for c0, . . . , cn ∈ K and b ∈ L. Then d(f(b)) = f ′(b)d(b) where f ′(b) is the derivative

of f(b) with respect to b in the sense of calculus.

Proof. Since f(b) is a finite sum, we apply linearity and Leibniz rule of d to get
f ′(b) = d(c0) + bd(c1) + c1d(b) + · · ·+ bnd(cn) + cnd(b

n)

Since each c0, . . . , cn ∈ K, we obtain f ′(b) = c1d(b) + · · ·+ cn · nbn−1d(b). Thus factoring out d(b) in the
sum, we obtain precisely the standard derivative in calculus, and that d(f(b)) = f ′(b)d(b)

We are ready for the main proposition of the subsection.
Proposition 3.1.2. Let K be a field and L/K a finite field extension. Then L/K is separable if and only if
Ω1
L/K = 0.

Proof. Suppose that L/K is separable. Suppose that b ∈ L has minimal polynomial f ∈ K[x]. f is sepa-
rable since L/K is separable. By 3.1.1, we have that d(f(b)) = f ′(b)d(b). But the fact that f is separable
implies that f ′(b) ̸= 0. At the same time we have f(b) = 0 since f is the minimal polynomial of b. This
implies that d(f(b)) = 0 in Ω1

L/K = 0. Since L is a field, and f ′(b) ̸= 0, we must have d(b) = 0 for all
b ∈ L. This means that Ω1

L/K = 0.

If L/K is inseparable, then there exists an intermediate field E such that L/E is a simple inseparable
extension. Since L/K is finite, L/E is finite and thus is algebraic which means that there exists some
polynomial p ∈ E[t] for which L = E[t]

(p(t)) . In this case, we have already seen that

Ω1
L/E

∼=
Ldt

(p′(t)dt)
∼=

L

(p′(t))

Since p′(t) = 0, we have that Ω1
L/E

∼= L ̸= 0. By the first exact sequence 2.3.1, we have that Ω1
L/K maps

surjectively onto Ω1
L/E ̸= 0which proves that Ω1

L/K is non-zero.
Materials referenced: [Per15], [Liu06]
This gives a very nice characterization of separability. Readers can findmore in [Har77] and [Liu06]. To
extend this equivalence under the assumption that L/K is algebraic instead of finite, one can show that
Ω1 preserves colimits in the sense in [Eis07]. Namely that the functor F : AlgebraR → ModT from the
category of R-algebra to the category of T -modules where T is a colimit of a diagram in the category of
R-algerba preserves colimits. Then observe that an algebraic extension is the colimit of the finite subex-
tensions.

Analogous to the above result, there is a similar proposition for DerK(L) for when L/K is algebraic and
separable. This is given by [Mor96].
Proposition 3.1.3. Let L/K be an algebraic field extension that is separable. Then DerK(L) = 0.

Proof. Suppose that D ∈ DerK(L). If a ∈ L, let p be the minimal polynomial of a. Then
0 = D(p(a)) = p′(a)D(a)

by 3.1.1. Since p is separable overK, p′(a) ̸= 0. Thus D(a) = 0 and so we are done.
Materials referenced: [Mor96]
This proposition will be of use at 4.1.7.
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3.2 Detecting Smoothness in Varieties
Inmanifolds, the the cotangent bundle is a vector bundle of cotangent spaces. Letmp = {f ∈ C[V ]|f(p) =
0} for a variety V , we have that mp/m

2
p is the cotangent space of V from [Sha12]. Motivated by the re-

lation between the cotangent bundles and the cotangent spaces of a manifold, we attempt to recover the
cotangent space of a variety from the module of Kähler Differentials.

Combined with the following theorem, we see that by localization, we can see that we recover the cotan-
gent space, at least in the affine, non-scheme theoretic sense:
Theorem 3.2.1. Let B be a local ring which contains a fieldK that is isomorphic to B/m the residue field. Then
the map

δ :
m

m2
→ Ω1

B/K ⊗B K

as given in 2.3.2 is an isomorphism.

Proof. Using the second exact sequence 2.3.2, we have that
m/m2 Ω1

B/K ⊗B B
m Ω1

(B/m)/K 0δ

But the third term is just Ω1
K/K which is clearly just 0. Thus δ is surjective. Using the same tactic as in

2.3.2, all we have to do is to show that w : DerK(B,N) → DerK(m,N) given by the restriction of scalars
is surjective for allK-modules N .
Let b ∈ B. I claim that b is a unique sum of an element in m and an element in B/m. Suppose that
b = c1 + m1 = c2 + m2 for c1, c2 ∈ K and m1,m2 ∈ m. Then this implies that c1 − c2 ∈ m is a non-
unit. But c1−c2 ∈ K does not have an inverse if and only if c1−c2 = 0 thus c1 = c2. This leavesm1 = m2.

I claim that the map is surjective as follows. For h ∈ DerK(m,N), define k ∈ DerK(B,N) by k(b) =
k(c + n) = h(n) where c + n is the unique representation of b using c ∈ R/m and n ∈ m. Since the
decomposition b = c+ n is unique, the map k is well defined. It is moreover B-linear since h is linear.

For b1, b2 ∈ B, we have that

d(b1b2) = h(c1m2 + c2m1 +m1m2) (Write bi = ci +mi where ci ∈ B/m and ki ∈ m)
= c1h(m2) + c2h(m1) + h(m1m2) = c1h(b2) + c2h(b1) + h(0)

= c1h(b2) + c2h(b1)

and

b1d(b2) + b2d(b1) = (c1 +m1)h(m2) + (c2 +m2)h(m1)

= c1h(b2) + c2h(b1)

where the second equality follows from the fact that h(u) = 0 for u ∈ m. Thus d is a derivation.

We can conclude that v is surjective so that we are done. Materials Referenced: [Har77], [Pro11]
We are almost ready in recovering the cotangent space. By considering the localization of a coordi-
nate ring C[V ] with a maximal ideal mp corresponding to points on the variety, we obtain a local ring
C[V ]mp with maximal ideal againmp. Then the cotangent space mp

m2
p
as seen in [Sha12], is isomorphic to

Ω1
C[V ]mp/C

⊗C[V ]mp
C by the above theorem. Therefore what remains is to compute the module of Kähler

differentials for the localization of a coordinate ring.

Fortunately localization commutes with the construction of the module of Kähler differentials:
Proposition 3.2.2. Let B be an algebra over A. Let S be a multiplicative subset of B. Then

S−1Ω1
B/A

∼= Ω1
S−1B/A

Proof. This is done in two steps.
Step 1: Ω1

S−1B/B = 0.
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We have that for any u ∈ S−1B, there exists some s ∈ S such that su ∈ B. Applying the canonical
derivation gives

sd(u) = d(su) (s ∈ S ⊂ B)
= 0 (su ∈ B)

Since s ∈ S is invertible, we must have d(u) = 0. Thus Ω1
S−1B/B = 0.

Step 2: Apply the first exact sequence.
By the first exact sequence 2.3.1 and apply it to C = S−1B, we obtain a surjective map

Ω1
B/A ⊗B S−1B → Ω1

S−1B/A

which by definition of localization of modules, is equal to
S−1Ω1

B/A → Ω1
S−1B/A

In order to show injectivity of this map, we show that
HomS−1B(Ω

1
S−1B/A, N) → HomS−1B(S

−1Ω1
B/A, N)

is surjective for any S−1B-module N . Now the latter module is isomorphic to HomB(Ω
1
B/A, N) by 7.1.3

Using 2.2.2, this is equivalent to showing surjectivity of the map
DerA(S−1B,N) → DerA(B,N)

But this is precisely the content of 2.1.3. So we are done.
Materials referenced: [Liu06]
In particular, the localization of of a coordinate ring with themaximal ideal recovers the cotangent space
of the variety:
Example 3.2.3. Cuspidal Cubic: Part 2 Let us compute the dimensions of the cotangent space of the
cuspidal cubic at different points.

Recall that the module of Kähler differentials of the cuspidal cubic is given by

Ω1
C[V ]/C

∼=
C[V ]dx⊕ C[V ]dy

(−3x2dx, 2ydy)

Writemp = (x−p1, y−p2) the maximal ideal corresponding to the point (p1, p2) ∈ V by Nullstellensatz.
To consider individual cotangent spaces of the variety, we need to first localize the module of Kähler
differentials:

(
Ω1

C[V ]/C

)
mp

.

Notice that for (p1, p2) ̸= (0, 0), mp does not contain the elements x and y. This means that x and y are
invertible in the localization. Thus within this localization, we can write the relation−3x2dx+2ydy = 0

as dy = 3x2

2y dx. This kills of one of the generators in C[V ]dx ⊕ C[V ]dy since we can now express the
generator dy with the generator dx. And so we are left with(

Ω1
C[V ]/C

)
mp

∼= C[V ]mp
dx

Clearly this is a free C[V ]mp -module of rank 1. Using 3.2.1, we see that
mp

m2
p

∼=
(
Ω1

C[V ]mp/C

)
⊗C[V ]mp

C[V ]mp

mp
(Theorem 3.2.1)

∼=
(
Ω1

C[V ]/C

)
mp

⊗C[V ]mp

C[V ]mp

mp
(Commtues with localization 3.2.2)

∼= C[V ]mpdx⊗C[V ]mp

C[V ]mp

mp

∼=
C[V ]mp

mp
dx

∼= Cdx (Residue field)
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which shows that mp

m2
p
is a 1-dimensional vector space over C.

However when (p1, p2) = (0, 0), things are different. Since localization commutes with quotients (by
3.2.2) and the module of Kähler differentials, we obtain

Ω1
C[V ](x,y)/C

∼=
C[V ](x,y)dx⊕ C[V ](x,y)dy

((−3x2)dx⊕ (2y)dy)

Now we claim that there is a surjection
(
Ω1

C[V ](x,y)/C

)
→ C[V ](x,y)

(x,y) dx⊕ C[V ](x,y)

(x,y) dy with kernel precisely(
Ω1

C[V ](x,y)/C

)
x⊕

(
Ω1

C[V ](x,y)/C

)
y

In particular, it sends the basis elements dx 7→ dx and dy 7→ dy.

For surjectivity:
Any element in the codomain is of the form (k1 + (x, y))dx ⊕ (k2 + (x, y))dy for k1, k2 ∈ C. Then by
considering the element k1dx⊕ k2dy ∈

(
Ω1

C[V ](x,y)/C

)
, we see that it precisely maps to (k1dx⊕ k2dy) =

(k1 + (x, y))dx⊕ (k2 + (x, y))dy.

The kernel:
We know that f + (x, y) = (x, y) if and only if f ∈ (x, y). Then fdx ⊕ gdy ∈

(
Ω1

C[V ](x,y)/C

)
is mapped

to 0dx ⊕ 0dy if and only if f, g ∈ (x, y). This means that we can rewrite f and g into f = xf1 + yf2 and
g = xg1 + yg2 so that

fdx⊕ gdy = x(f1dx⊕ g1dy) + y(f2dx⊕ g2dy) ∈
(
Ω1

C[V ](x,y)/C

)
x⊕

(
Ω1

C[V ](x,y)/C

)
y

Together with 3.2.1 and writingm = (x, y), we can conclude that

m

m2
∼=
(
Ω1

C[V ](x,y)/C

)
⊗C[V ](x,y)

C[V ](x,y)

(x, y)
(Thoerem 3.2.1)

∼=

(
Ω1

C[V ](x,y)/C

)
(
Ω1

C[V ](x,y)/C

)
x+

(
Ω1

C[V ](x,y)/C

)
y

(Proposition 7.1.4)

∼=
C[V ](x,y)

(x, y)
dx⊕

C[V ](x,y)

(x, y)
dy (The isomorphism we just proved)

∼= Cdx⊕ Cdy (Residue field)

which shows that m
m2 is a vector space of dimension 2 over C.

Materials Referenced: [Vak22]
While intuitively we know that the ellipse does not have singularities, we still have to be careful of the
fact that there are point where the tangent space is a vertical line or a horizontal line.
Example 3.2.4. Ellipse: Part 2 Recall that the module of Kähler differentials for the ellipse 4x2+9y2 = 36
is given by

Ω1
C[W ]/C

∼=
C[W ]dx⊕ C[W ]dy

(8xdx, 18ydy)

Write mp = (x − p1, y − p2) for the maximal ideal corresponding to a point (p1, p2) on the ellipse. In a
similar fashion as above, we consider the localization(

Ω1
C[W ]/C

)
mp

There are three cases to consider:

17
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Case 1: p1, p2 ̸= 0. Then x and y are invertible in the localization
(
Ω1

C[W ]/C

)
mp

since x, y /∈ mp. Within
the localization, we can now write the relation 8xdx + 18ydy = 0 as dy = − 4x

9y dx thanks to y being
invertible. Then (

Ω1
C[W ]/C

)
mp

∼=
(
C[W ]dx⊕ C[W ]dy

(8xdx, 18ydy)

)
mp

∼= C[W ]mp
dx⊕ C[W ]mp

(
−4x

9y
dx

)
∼= C[W ]mp

dx (4x/9y ∈ C[W ]mp
)

which is free of rank 1.

Case 2: p1 = 0 and so p2 = ±2.
Unfortunately mp = (x, y − p2) means that x is no longer invertible in the localization, but we can still
invert y since y /∈ mp. So we write the relation as dy = −4x

9y dx to get
(
Ω1

C[W ]/C

)
mp

∼= C[W ]mpdxwhich is
again, free of rank 1.

Case 3: p2 = 0 and so p1 = ±3.
This timemp = (x− p1, y)means that y is no longer invertible. However the way to go around this is to
instead write dx in terms of dy. Since x is invertible in the localization this time, we have dx = − 9y

4xdy.
A similar argument shows that

(
Ω1

C[W ]/C

)
mp

∼= C[W ]mp
dy which is again free of rank 1.

We can conclude that for any point (p1, p2) on the variety,Ω1
C[W ]mp/C

is free of rank 1. A similar argument
as that of the cuspidal cubic shows that the cotangent space has dimension 1 for any point on the ellipse.
Finally we return to the case of the double cone. Its calculations are fairly similar to that of the cuspidal
cubic. However since the double cone will have points on it that intersects the xz-plane or yz-plane, we
need to apply a similar method as to the one we saw for ellipses.
Example 3.2.5. The Double Cone: Part 2 Recall that the module of Kähler differentials of the double
cone x2 + y2 = z2 is given by

Ω1
C[U ]/C

∼=
C[U ]dx⊕ C[U ]dy ⊕ C[U ]dz

(2xdx, 2ydy,−2zdz)

Write mp = (x − p1, x − p2, x − p3) the maximal ideal corresponding to a point p = (p1, p2, p3) on the
double cone. Notice that 2x, 2y, 2z ∈ mp if and only if p1 = p2 = p3 = 0. We do a similar case by case
analysis as the above examples. There are three cases to consider for the localization

(
Ω1

C[U ]/C

)
mp

.

Case 1: (p1, p2, p3) ̸= 0
Then at least one of p1, p2, p3 is non-zero. Correspondingly, at least one of x, y, z is invertible in the
localization. To illustrate, suppose that p1 ̸= 0. Then x is invertible in the localization and we can write
the relation as dx = z

xdz −
y
xdy. This means that we have written one generator in terms of the other

two, which means that now (
Ω1

C[U ]/C

)
mp

∼= C[U ]mpdy ⊕ C[U ]mpdz

which shows that the module of Kähler differentials is free of rank 2. Using 3.2.1 we have that
mp

m2
p

∼= Ω1
C[U ]mp/C ⊗C[U ]mp

C

∼=
(
C[U ]mp

dy ⊕ C[U ]mp
dz
)
⊗C[U ]mp

C

∼=
(
C[U ]mp

dy ⊗C[U ]mp
C
)
⊕
(
C[U ]mp

dz ⊗C[U ]mp
C
)

∼= Cdy ⊕ Cdz

which shows that mp/m
2
p has dimension 2 as a C-vector space. The case is similar for when y ̸= 0 and

z ̸= 0.

18



Algebraic Differential Forms

Case 2: (p1, p2, p3) = 0.
Since localization commutes with quotients by 3.2.2, we have

Ω1
C[U ](x,y,z)/C

∼=
C[U ](x,y,z)dx⊕ C[U ](x,y,z) ⊕ C[U ](x,y,z)dz

(2xdx⊕ 2ydy ⊕−2zdz)

Now we claim that there is a surjection from this module to
C[U ](x,y,z)

(x, y, z)
dx⊕

C[U ](x,y,z)

(x, y, z)
dy ⊕

C[U ](x,y,z)

(x, y, z)
dz

that sends dx 7→ dx, dy 7→ dy and dz 7→ dz.

For surjectivity:
Any element in the codomain is of the form (k1 + (x, y, z))dx ⊕ (k2 + (x, y, z))dy ⊕ (k3 + (x, y, z))dz
for k1, k2, k3 ∈ C. Then by considering the element k1dx ⊕ k2dy ⊕ k3dz ∈ Ω1

C[U ](x,y,z)/C, we see that it
precisely maps to k1dx⊕ k2dy + k3dz = (k1 + (x, y, z))dx⊕ (k2 + (x, y, z))dy + (k3 + (x, y, z))dz.

The kernel:
We know that v + (x, y, z) = (x, y, z) if and only if v ∈ (x, y, z). Then fdx ⊕ gdy ⊕ hdz in the domain
is mapped to 0dx ⊕ 0dy ⊕ 0dz if and only if f, g, h ∈ (x, y, z). This means that we can rewrite the three
functions as 

f = xf1 + yf2 + zf3

g = xg1 + yg2 + zg3

h = xh1 + yh2 + zh3

so that
fdx⊕ gdy ⊕ hdz = x(f1dx⊕ g1dy ⊕ h1dz) + y(f2dx⊕ g2dy ⊕ h2dz) + z(f3dx⊕ g3dy ⊕ h3dz)

∈
(
Ω1

C[U ](x,y,z)/C

)
x⊕

(
Ω1

C[U ](x,y,z)/C

)
y ⊕

(
Ω1

C[U ](x,y,z)/C

)
z

and that
(
Ω1

C[U ](x,y,z)/C

)
x⊕

(
Ω1

C[U ](x,y,z)/C

)
y ⊕

(
Ω1

C[U ](x,y,z)/C

)
z is the kernel of this map.

Now we have an isomorphism
Ω1

C[U ](x,y,z)/C(
Ω1

C[U ](x,y,z)/C

)
x⊕

(
Ω1

C[U ](x,y,z)/C

)
y ⊕

(
Ω1

C[U ](x,y,z)/C

)
z

∼=
3⊕
i=1

C[U ](x,y,z)

(x, y, z)
dxi

(where we write x1 as x, x2 as y and x3 as z for simplicity).

Together with 3.2.1, and writingm = (x, y, z), we can conclude that
m

m2
∼=
(
Ω1

C[U ](x,y,z)/C

)
⊗C[U ](x,y,z)

C[U ](x,y,z)

(x, y, z)
(Theorem 3.2.1)

∼=
Ω1

C[U ](x,y,z)/C(
Ω1

C[U ](x,y,z)/C

)
x⊕

(
Ω1

C[U ](x,y,z)/C

)
y ⊕

(
Ω1

C[U ](x,y,z)/C

)
z

(Proposition 7.1.4)

∼=
3⊕
i=1

C[U ](x,y,z)

(x, y, z)
dxi

∼= Cdx⊕ Cdy ⊕ Cdz

which shows that the cotangent space at the origin has dimension 3.

This matches nicely with the geometric picture of the double cone. Every non-zero point on the double
cone has cotangent space of dimension 2.
Recall that a point on the variety is singular if the dimension of the cotangent space is strictly greater
than the dimension of the variety. The module of Kähler Differentials gives us a way to find out which
points are the singularities of the varieties by analyzing the Jacobian of the equations defining the variety
(Indeed the Jacobian is encoded in the module of Kähler Differentials as the quotient relation).
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4 Relation of the Module of Kähler Differentials with Manifolds
The previous section showed that given the module of Kähler differentials over a coordinate ring, we
can determine the dimension of the cotangent space of the corresponding variety, at different points.
In the context of manifold theory, smooth 1-forms are smooth sections of the cotangent bundle, while
we can recover the cotangent space of point of the manifold from the cotangent bundle. This motivates
the following section. In particular, we compare the two constructions and would like to find out how
similar are the two.

4.1 The Global Case: Vector Fields and Smooth 1-Forms
We have encountered in MA3H5 Manifolds the definition of vector fields and 1-forms. It has been done
in a very geometric way by visualizing a smooth assignment of tangent / cotangent vectors for each
point on the manifold. There is also a very algebraic way of describing the tangents that reveals more
structure on these vectors.

The below definition is given in [Tu10] P.136.
Definition 4.1.1. Smooth Vector Field LetM be a smooth manifold. A smooth vector field is a smooth
section X :M → TM fromM to the tangent bundle TM . The set of all smooth vector fields is denoted
by X(M).
Wewill not prove thatX(M) has the structure of a vector space here andwewill take this fact for granted.
Interested readers can refer to [Tu10].

If we take theR-algebra C∞(M) as a module over itself, it makes sense to talk about the set of all deriva-
tions DerR(C∞(M), C∞(M)) from the R-algebra to itself. Let us denote this by the shorthand notation
DerR(C∞(M)). Note that here we are talking about derivations of the algebra, not derivations at a point
p of the manifold, as noted in [Tu10] P.17.

[Tu10] gave an isomorphismbetween the vector spacesX(M) of all smooth vector fields andDerR(C∞(M))
in the caseM = Rn. It also gave out steps in how one would go to prove this for general smooth mani-
folds.
Proposition 4.1.2. LetM be a smooth manifold. The map

ϕ : X(M) → DerR(C∞(M))

that sends X 7→ (f 7→ Xf) defines an isomorphism of vector spaces.

Proof.
Step 0: ϕ(X) is a derivation.
By definitionwe have thatϕ(X)(f) = Xf . Wewant to show thatXf ∈ C∞(M). Let (U, ϕ = (x1, . . . , xn))
be a chart onM . Then X can be written as∑n

i=1 a
i ∂
∂xi for some C∞ function ai in the chart. It follows

that Xf =
∑n
i=1 a

i ∂f
∂xi is C∞. Since M can be covered by such charts, we have that Xf is C∞ on M .

ϕ(X) is R-linear and satisfies the Leibniz rule since the partial derivatives ∂
∂xi satisfies them on a local

expression of X . This means that X also satisfies them.

Step 1: ϕ is a C∞(M)-linear map.
Let X,Y ∈ X(M). For any f ∈ C∞(M) and p ∈ M , we have (Xp + Yp)(f) = Xp(f) + Yp(f) since TpM
is a vector space. This means that as p varies, we have (X + Y )(f) = Xf + Y f . X + Y is smooth since
smooth sections sum to smooth sections.

Now let g ∈ C∞(M). We want to show that ϕ(gX)(f) = gϕ(X)(f) for any f ∈ C∞(M). But we have on
local coordinates:

gX(f) = g

n∑
i=1

ai
∂f

∂xi
=

n∑
i=1

gai
∂f

∂xi
= (gX)(f)
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Step 2: ϕ is injective.
Suppose that X ∈ X(M) is such that Xf = 0 for any f . Let (U, ϕ = (x1, . . . , xn)) be a chart. On the
charts, Xf can be expressed as Xf =

∑n
i=1 c

i ∂f
∂xi locally. Choose f such that ∂f

∂xj is zero for all j other
than 1. Then we have that 0 = Xf = c1 ∂f

∂x1 which shows that c1 must be zero. We can do the same thing
for c2, . . . , cn to show that locally, c1 = · · · = cn = 0. Since M can be covered by such charts, we have
that X = 0.

Step 3: Define a new map Dp and show that it is well defined.
LetD ∈ DerR(C∞(M)). DefineDp : C

∞
M,p → C∞

Mp
byDp([f ]) = [Df ]where f is any global extension of f

(this is possible by partition of unity). We want to show that for different choices g, h ∈ [f ], [Dg] = [Dh].
Now if g, h ∈ [f ], then there exists some open set U ⊆ M such that g|U = h|U . Then this means that
Dg|U = Dh̃|U and thus Dg and Dh lie the same equivalence class: [Dg] = [Dh].

Step 4: Dp is a derivation at a point p.
I want to show thatDp ∈ DerR(C∞

M,p). This means that we need to check R-linearity and that it satisfies
the Leibniz rule.

• R-linearity: Let a ∈ R. I claim that a[f ] = [af ]. Let g ∈ [f ]. Then g|U = f |U for some open set U of
M . This is true if and only if ag|U = af |U thus ag ∈ [af ]. Then we have

Dp(a[f ]) = Dp([af ])

= [Daf ]

= [D(af)] (Extension is linear)
= [aD(f)] (D is R-linear)
= a[Df ]

= aDp([f ])

• Leibniz rule: Let [f ], [g] ∈ C∞
M,p. Then we have

Dp([f ] · [g]) = Dp([fg])

= [Dfg]

= [D
(
fg
)
]

= [fDg + gDf ]

= [f ][Dg] + [g][Df ]

= [f ]Dp([g]) + [g]Dp([f ])

This shows that Dp is a derivation at a point p.

Step 5: ϕ is surjective and thus ϕ is an isomorphism of C∞(M)-modules.
In step 4, to every D ∈ DerR(C∞(M)) we associated a tangent vector Dp. Let X : M → TM be defined
as X(p) = Dp. It remains to show X is a smooth vector field and that ϕ(X) = D.

Let f ∈ C∞(M). We claim that Dp([f ]) glue together into Df which is a smooth function. Clearly, Df
is a smooth function on M that lies in each [Df ] ∈ C∞

M,p. This Df is also unique: Suppose that g is a
globally smooth function that also lies in each [Df ] ∈ C∞

M,p. Then there exists some neighbourhood Up
of p such that Df |U = g|U . But all the Up coverM . Thus Df = g. It is also clear that ϕ(X)(f) = Df for
every f ∈ C∞(M). Thus ϕ(X) = D. Materials referenced: [Tu10]
This is an unfortunate mess of notation! The X on the domain of the map ϕ is a function M → TM
while the map f 7→ Xf which is typically also indicated by X , sends a C∞(M) function to a C∞(M)
function.

Finally, let us also recall the definition of smooth 1-forms on M . The definition below is also given in
[Tu10] P.193
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Definition 4.1.3. Smooth 1-Forms Let M be a smooth manifold. A smooth 1-form on M is a smooth
section ω : M → T ∗M from M to the cotangent bundle. The set of all smooth 1-forms is denoted by
Ω1(M).
Similar to X(M), there is a vector space structure on Ω1(M) which we will not prove and take it for
granted again. Once again, readers can refer to [Tu10].

Considering the similarities between smooth vector fields and smooth 1-forms in their definition, we
expect them to be somewhat related. Indeed we have the following proposition.
Proposition 4.1.4. Let M be a smooth manifold. On local coordinates, write X =

∑n
i=1 a

i ∂
∂xi

for X ∈
DerR(C∞(M)) andω =

∑n
i=1 b

idxi forω ∈ Ω1(M). Define a pairingψ : DerR(C∞(M))×Ω1(M) → C∞(M)
by

(X,ω) 7→ ω(X)

(
p 7→

n∑
i=1

bi(p)ai(p)

)
locally. Then this is a dual pairing and hence induces an isomorphism

Ω1(M) ∼= HomC∞(M)(DerR(C∞(M)), C∞(M))

Proof. Firstly, note that this definition makes sense. On local coordinates, write X =
∑n
i=1 a

i ∂
∂xi

for
X ∈ DerR(C∞(M)) and ω =

∑n
i=1 b

idxi for ω ∈ Ω1(M). Then locally we have that

ω(X) =

n∑
k=1

bkdxk

 n∑
j=1

aj
∂

∂xj


=

n∑
k=1

bkak (dxk
(
∂
∂xj

)
= δi,j)

Since each bi and ai are smooth, ω(X) is also smooth locally and hence ω(X) is smooth globally. Now
we show that this is a dual pairing. Suppose first that ψ(X,ω) = 0 for all X ∈ DerR(C∞(M)). Fix
k ∈ {1, . . . , n}. Choose X ∈ DerR(C∞(M)) such that aj = 0 for any j ̸= k and on any chart ofM . Then
ψ(X,ω) = 0 implies bkak = 0 for ak ̸= 0. Thus bk = 0. Repeating this argument for each k ∈ {1, . . . , n}
shows that b1 = · · · = bn = 0 on any chart of M and thus ω = 0. A similar method shows that if
ψ(X,ω) = 0 for all ω ∈ Ω1(M), thenX = 0. We conclude that ψ is a dual pairing and hence induces the
required isomorphism.
Now that we have the definitions at hand, we turn back to its relation with the module of Kähler dif-
ferentials. In particular, how is the module of Kähler differentials related to the smooth 1-forms? Recall
that for each manifold, there is an R-algebra of smooth functions onM , given by

C∞(M) = {f :M → R | f is smooth}
We have the following result:
Proposition 4.1.5. LetM be a smooth manifold. Then we have an isomorphism of modules(

Ω1
C∞(M)/R

)∗∗ ∼= Ω1(M)

Proof. Applying C∞(M) to lemma 2.2.2, we obtain the expression

HomR

(
Ω1
C∞(M)/R, C

∞(M)
)
∼= DerR(C∞(M), C∞(M)) = DerR(C∞(M))

This shows that
(
Ω1
C∞(M)/R

)∗
= DerR(C∞(M)).

Now on one hand, taking the C∞(M)-module dual of DerR(C∞(M)) again results in the double dual
(Ω1

C∞(M)/R)
∗∗. On the other hand, by definition, we know that Ω1(M), the space of smooth 1-forms, is

the C∞(M)-module dual of DerR(C∞(M)). This means that we have(
Ω1
C∞(M)/R

)∗∗ ∼= Ω1(M)

Thus we are done.
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Unfortunately, general modules do not have the nice property that double duals are canonically iso-
morphic to the module itself. So we cannot conclude that Ω1

C∞(M)/R and Ω1(M) is “the same” up to
isomorphism. The best that we can do is is a canonical homomorphism B → B∗∗ for any A-module B.
[Bou73] P.239 has a brief section on double duals of a module.

In terms of manifolds, we can prove the existence of the canonical homomorphism easily.
Lemma 4.1.6. LetM be a smooth manifold. Then the exterior derivative d : C∞(M) → Ω1(M) induces a unique
C∞(M)-module homomorphism

ϕ : Ω1
C∞(M)/R → Ω1(M)

given by the universal property of the module of Kähler differentials.

Proof. We know that there is the exterior derivative d : C∞(M) → Ω1(M) sending a smooth function on
M to its 1-form. This map is an R-linear map since scalar multiplication of R can be factored outside.
The exterior derivative also satisfies the Leibniz rule. Thus, by the universal property of the module of
Kähler differentials, the required map exists and is unique.
One way to think of the failure of bijectivity is to consider what happens to analytic functions. Take
M to be the real line R for simplicity. The function ex, under the exterior derivative gets sent to exdx.
However, considering the construction of the module of Kähler differentials using the quotient of the
free module, we see that we can only perform the Leibniz rule and linearity rule only a finite amount of
times, whereas ex is a Taylor polynomial of countable many terms.

Notice that since the exterior derivative is R-linear, it is an R-derivation and thus Ω1(C∞(R)) factors
through Ω1

C∞(R)/R by the universal property. In Ω1(C∞(R)), dext(ex) = exdext(x). The map Ω1
C∞(R)/R →

Ω1(C∞(R)) given by the universal property is defined by d(f) 7→ dext(f). This means that d(ex) and
exd(x) map to the same element in Ω1(C∞(R)). But whether d(ex) and exd(x) are the same element in
Ω1
C∞(R)/R is a question of injectivity of this map.

Below is an idea of how Ω1(R) is not isomorphic to Ω1
C∞(R)/R when considering R as a manifold. The

following proof is modified and is based on a Maths Overflow discussion: [hes]
Example 4.1.7. Consider R as a smooth manifold. Then Ω1(R) is not isomorphic to Ω1

C∞(R)/R. In partic-
ular, for f(x) = x and g(x) = ex, d(ex) = exd(x) in Ω1(R) but d(ex) and d(x) are linearly independent in
Ω1
C∞(R)/R.

Proof.
Consider the ring C∞(M). Let D be a non-principal ultra filter 7.3.1 on N. Define

I =

{
f ∈ C∞(R)

∣∣∣∣ {n ∈ N | f(n) = 0} ∈ D

}
We show that I is a maximal ideal. It is an ideal since for f, g ∈ I , then

{n ∈ N | f(n) + g(n) = 0} ⊇ {n ∈ N | f(n) = 0} ∩ {n ∈ N | g(n) = 0} ∈ D

By property 2 and 3 in definition 7.3.1, we have that {n ∈ N | f(n) + g(n) = 0} ∈ D so that f + g ∈ I .
Let r ∈ R. Then {n ∈ N | rf(n) = 0} = {n ∈ N | f(n) = 0} ∈ D when r ̸= 0. When r = 0, we have that
{n ∈ N | rf(n) = 0} = N. By property 1 of definition 7.3.1 we have N ∈ D so that either way, rf ∈ I .

Consider the coset f + I for f /∈ I . We want to show that it has an inverse. If f /∈ I , then {n ∈ N | f(n) ̸=
0} ∈ D by the property of an ultrafilter. We can find g ∈ C∞(R) such that g(n) = 1

f(n) for all n ∈ N such
that f(n) ̸= 0 (See 7.4.2). Then {n ∈ N | f(n) ̸= 0} ∈ D implies that {n ∈ N | f(n)g(n) = 1} ∈ D. This
implies that fg − 1 ∈ I . Thus I is a maximal ideal of C∞(R).

Now K = C∞(R)
I is a field. R is embedded as a subfield of K by the field homomorphism defined

by c 7→ (f(x) = c) + I . Moreover, [f(x) = x] and [g(x) = ex] in K are algebraically independent.
Indeed, if p(a, b) =

∑
i,j ui,ja

ibj is a polynomial in R[x, y], we have that p([x], [ex]) ∈ I if and only if
{u ∈ R | p(u, eu) = 0} ∈ D. But p is a polynomial and so can only has at most a finite number of
solutions. This means that {u ∈ R | p(u, eu) = 0} is finite. But then this set cannot be in D because
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Filter contains finite sets if and only if it is principal by 7.3.6). Thus p([x], [ex]) /∈ I and hence they are al-
gebraically independent. Choose a transcendence basis S = {[f(x) = x], [g(x) = ex], z3, z4, . . . } forK/R.

We now have the following extension of fields:

R < R(S) < K

Any R-derivation d on R(S) is uniquely determined its values on S. This fact is given in [ZS75] Ch2.17
Example 4. In particular we can choose the values that d([x]) and d([ex]) take such that they are lin-
early independent. Since S is a transcendence basis, K/R(S) is an algebraic extension. It is more over
separable since K is a field extension of R which has characteristic 0. By 3.1.3, DerR(S)(K) = 0. This
means that any R-derivation on R(S) can be extended uniquely toK. Indeed, if d1, d2 are extensions of
an R-derivation d over R(S), then d1 − d2 is an R(S)-derivation so that

d1 − d2 ∈ DerR(S)(K) = 0

which implies that d1 = d2.

Now let d : R(S) → R(S) be an R-derivation. By the above digression it can be extended uniquely to
an R-derivation d : K → K. Denote p : C∞(R) → C∞(R)

I = K the C∞(R)-linear projection map and
in particular is an R-linear map. Now consider the map D = d ◦ p. Since d and p are R-linear, D is
R-linear. Also, since p is C∞(R)-linear and d satisfies the Leibniz rule, we conclude thatD also satisfies
the Leibniz rule. So we now have an R-derivation D : C∞(R) → K. By the universal property of the
module of Kähler differentials, we obtain a factorization

C∞(R) Ω1
C∞(R)/R

K

du

D
∃!q

where du denotes the universal derivation associated with Ω1
C∞(R)/R.

By the above digression, D(x) and D(ex) are linearly independent in K. But this means that du(x) and
du(ex) are linearly independent in Ω1

C∞(R)/R. Because otherwise, if they are linearly dependent, then
q(du(x)) = D(x) and q(du(ex)) = D(ex)would have linear relations, a contradiction.
In terms of the global constructs on a manifolds, we have the following diagram
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C∞(M)

Der(C∞(M)) Ω1
C∞(M)/R

(
Ω1
C∞(M)/R

)∗∗

Ω1(M)

dConstruct the module

Dualizes to

Dual by Definition

Dualize again

∼=

Canonical Hom

Exterior Derivative

where Der(C∞(M)) are the smooth vector fields and Ω1(M) are the smooth 1-forms. By [Bou73], the
isomorphism does not occur frequently. One such criteria for isomorphism is for Ω1

C∞(M)/R to be a
finitely generated projective module.

As a final note, by considering C∞(−) as a sheaf of algebras on a manifold M , we have a completely
analogous result, such as

Ω1(U) ∼= HomC∞(U)/R(DerR(C∞(U)), C∞(U))

This leads to the natural question of whether this generalizes well into the germs of the sheaf. Namely,
can we identify similar isomorphisms as above for tangent spaces and cotangent spaces? The following
subsection will extend on this.

4.2 The Local Case: Tangent Spaces and Cotangent Spaces
While we have seen the connection between globally smooth 1-forms and the module of Kähler differ-
entials, we have yet to see the connection locally. Analogous to the global constructions where smooth
vector fields are equal to DerR(C∞(M)) and smooth 1-forms are equal to Der(C∞(M))∗, we can also
define tangents and cotangent vectors in a similar fashion. A crucial fact is the following.
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Proposition 4.2.1. LetM be a smooth manifold. Then C∞
M,p is a local ring with maximal ideal

mp = {f ∈ C∞
M,p | f(p) = 0}

Proof. mp is clearly an ideal since f, g ∈ mp means that there is some neighbourhood Uf for which
f(p) = 0 and some neighbourhood Ug for which g(p) = 0. This implies f(p) + g(p) = 0 on any open set
W ⊂ Uf ∩ Ug . Also r ∈ C∞

M,p implies r(p)f(p) = 0 in Uf since f(p) = 0.
To see that this ideal is maximal, notice that cosets of mp are exactly of the form x + mp = {f ∈
C∞
M,p|f(p) = x} for x ∈ R. So we have

C∞
M,p

mp

∼= R

which is a field.
This maximal ideal is clearly unique since it consists precisely of its non-units.
The standard definition of the tangent space is given in terms of the above local ring and derivations.
The following definition is given in both [Tu10] and in MA3H5:
Definition 4.2.2. (Co)Tangent Spaces LetM be a smooth manifold. Let p ∈M . The tangent space ofM
at p is

TpM = DerR(C∞
M,p,R)

The cotangent space ofM at p is the vector space dual of the tangent space, denoted T ∗
pM .

Notice that in the definition of DerA(B,M) in ??, we require thatM is a B-module. So how is R a C∞
M,p-

module? The answer lies in 4.2.1. It say that R ∼= C∞
M,p

mp
so that R can be thought of as the quotient ring

of C∞
M,p, which is where the module structure of C∞

m,p comes from.

Similar to 4.1.5 where there is a relation between vector fields and differential 1-forms (global versions
of tangent spaces and cotangent spaces), we can also establish a connection between the (co)tangent
space and module of Kähler differentials.
Proposition 4.2.3. LetM be a smooth manifold and p ∈M be a point. Then

T ∗
pM

∼= Ω1
C∞

M,p/R
⊗C∞

M,p
R

is the cotangent space ofM at p.

Proof. Using 3.2.1, we obtain an isomorphismmp/m
2
p
∼= Ω1

C∞
M,p/R

⊗C∞
M,p

Rwheremp = {f ∈ C∞
M,p | f(p) =

0}. Define a pairing
ϕ :

mp

m2
p

× TpM → R

by ϕ(f,Xp) = Xpf . We show that this is a dual pairing. Suppose that ϕ(f,Xp) = 0 for all Xp ∈ TpM .
By Taylor’s theorem (Theorem C.15 in [Lee03]), we have that on a local chart,

f(x) = f(p) +

n∑
k=1

∂f

∂xi

∣∣∣∣
p

(xi − pi) +

n∑
k=1

ui(x)(xi − pi)

where each ui are C∞ in the chart and ui(p) = 0. But since f ∈ mp/m
2
p, this means that f(p) = 0.

Together with Xpf = 0, we are left with f being identified in mp/m
2
p as

∑n
k=1 ui(x)(xi − pi). But each

ui(x) and xi − pi lie inmp implies that f ∈ m2
p.

Now suppose that ϕ(f,Xp) = 0 for all f ∈ mp/m
2
p. In local coordinates this means that

n∑
k=1

ai
∂f

∂xi

∣∣∣∣
p

= 0

for each ai beingC∞, dependent onX . Then in particular, the function ui(x) = xi−pi defined locally on
p lies inmp with only non zero partial derivative being ∂u

∂xi
. Substituting this into the expression, we get

ai
∂u
∂xi

= 0. This leaves us with ai = 0. Repeating the argument for each i, we see that a1 = · · · = an = 0
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which means that Xp = 0.

The dual pairing then implies that the cotangent space is given by

T ∗
pM

∼=
mp

m2
p

and so we conclude.
Given a smooth manifoldM and its cotangent bundle p : T ∗M → M , for any point x on the manifold
we can obtain its cotangent space by p−1(x). The above proposition shows that we can use the module
of Kähler differentials to recover the cotangent space as well.
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5 Conclusion
5.1 What we have done
In the first part, we gave a number of isomorphic constructions of the module of Kähler differentials.
We have also seen some of its first results, namely the first and second exact sequences and used them
to compute the module of Kähler differentials of coordinate rings.

In the second part, we have seen from 3.2.1 that we can recover the cotangent space from the module
of Kähler differentials, showing that it bears similarity with the smooth 1-forms / cotangent bundle on
manifolds. We also used the module to find the dimension of the cotangent spaces. There is also a brief
discussion on the relation of the module of Kähler differentials and separable field extensions.

However in the last part, we then showed that it is only the double dual that actually resembles the
smooth 1-forms in the case of manifolds. Nonetheless, we are able to at least recover the classical cotan-
gent space of a variety using the localization of its coordinate ring into the maximal ideal corresponding
to the point. In fact, [Har77] does show that this construction can be made into the relative cotangent
sheaf by the tilde construction (Ω1

X/Y )
∼ and thus works well with schemes. There is a brief collection of

materials relating to this sheaf from [Har77], [Liu06] and [HMS17].

5.2 Looking Forward
There are many more ways of working with the sheaf of Kähler differentials. In the theory of manifolds,
we use the algebra of smooth differential forms together with the exterior derivative to form a cochain
complex. This then gives the de Rham cohomology of a smooth manifold. We can also do the same for
Kähler differentials. Namely, by constructing the exterior algebra of the module of Kähler differentials
and extending the the universal derivation, we also obtain a cochain complex which gives us a cohomol-
ogy.

Given the wide deployment of scheme theory in algerbaic geometry, one can also turn Kähler differen-
tials into a sheaf. This is done by mimicking the construction in proposition 2.2.4. Interested readers are
referred to [Har77] and [Liu06] .

Throughout our journey, we have also established some connection between themodule of Kähler differ-
entials and field theory. Separability in fields of characteristic 0 is characterized by the fact that minimal
polynomials and its formal derivative is coprime. Intuitively it makes sense for the module of Kähler
differentials is related to this notion since they both are related to derivatives. Advanced treatment of
the relationship can be found in [Eis07], [ZS75] and [Mat80].

We have omitted the fact that Ω1 works well between coproducts and coequalizers in the category of
algebras over a fixed ring R. [Eis07] proves the two special cases of colimits (coproducts and coequal-
izers), thus proving that the functor

F : AlgebraR → ModT
where T is the colimit of a diagram in AlgebraR, defined by S 7→ T ⊗S Ω1

S/R and

(φ : S → S′) 7→
(
1⊗Dφ : T ⊗S (S ⊗S′ Ω1

S′/R) → T ⊗S Ω1
S/R

)
preserves colimits. As suggested in section 3.1, this allows the characterization of separability to be ex-
tended from the case of finite extensions to algebraic extensions since algebraic extensions are colimits
of its finite subextensions. There are also functorial properties of Ω1 in which [Eis07] contains.

LetR be a ring and letM be anR-module. Define theHoschild complex to be the chain complexC(R,M)
given as follows.

· · · M ⊗R⊗n+1 M ⊗R⊗n M ⊗R⊗n−1 · · · M ⊗R M 0d d
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The map d is defined by d =
∑n
i=0(−1)idi where di : M ⊗ R⊗n → M ⊗ R⊗n−1 is given by the fol-

lowing formula.
• If i = 0, then d0(m⊗ r1 ⊗ · · · ⊗ rn) = mr1 ⊗ r2 ⊗ · · · ⊗ rn

• If i = n, then dn(m⊗ r1 ⊗ · · · ⊗ rn) = rnm⊗ r1 ⊗ · · · ⊗ rn−1

• Otherwise, then di(m⊗ r1 ⊗ · · · ⊗ rn) = m⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn−1

The cohomology of this cochain complex is calledHochschild cohomology and is denoted byHHn(R;M).
It is a direct generalization of group cohomology. The Hochschild-Kostant-Rosenberg theorem states
that when we chooseM = A a smooth algebra over a field R = k, then we obtain an isomorphism

HH1(R;M) ∼= Ω1
A/k

More generally, by wedging the module of Kähler differentials n times with itself, we obtain an isomor-
phism between the wedge and the nth Hochschild cohomology. This ties in the use of the module in
Algebraic Topology and is closely related to the trace map andK-theory. Interested readers are referred
to [Lod97].
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7 Appendix
7.1 Brief Section on Modules
In this section we collect some theorems on modules that will prove itself to be useful later. All rings are
assumed to be commutative with 1 ̸= 0.

The first half of this section will consists of theorems related to the set of allR-module homomorphisms
HomR(M,N) for M,N R-modules. The second half is dedicated to tensor products and its relation to
various constructs of modules. There will also be theorems related to free modules closer to the end.
Theorem 7.1.1. Let R be a ring andM,N be R-modules. Then the set

HomR(M,N) = {f :M → N |f is an R-module homomorphism}

is an R-module.

Proof. Let f, g ∈ HomR(M,N). Define f+g :M → N bym 7→ f(m)+g(m). f+g is indeed anR-module
homomorphism since

• Addition is preserved: Form1,m2 ∈M ,

(f + g)(m1 +m2) = f(m1 +m2) + g(m1 +m2)

= f(m1) + f(m2) + g(m1) + g(m2)

= (f + g)(m1) + (f + g)(m2)

• Scalar multiplication is preserved: For r ∈ R andm ∈M ,

(f + g)(r ·m) = f(r ·m) + g(r ·m)

= r · f(m) + r · g(m)

= r · (f + g)(m)

This shows that this operation is closed under HomR(M,N).
This operation also allows HomR(M,N) to be an abelian group since the axioms are satisfied:

• Associativity: Follows from associativity of addition inM .
• Identity: The zero map 0 since (f + 0)(m) = f(m) + 0 = f(m) for eachm ∈M . Thus f + 0 = f

• Inverse: The mapm 7→ −f(m) for each m ∈ M is the inverse of f : M → N . Clearly it is equal to
the zero map.

• Abelian: Follows from the fact thatM is abelian.
Define an action on HomR(M,N) by · : R × HomR(M,N) → HomR(M,N) where r · f is the function
takingm ∈M to r ·f(m). Associativity clearly follows sinceN is anR-module. The identity 1 also gives
the trivial action. Thus we are done.
Theorem 7.1.2. Suppose that A,B,C are R modules. Suppose that f : A → B and g : B → C are R-module
homomorphisms. Then the following sequence

A B C 0
f g

is exact if and only if the following sequence

0 HomR(C,N) HomR(B,N) HomR(A,N)
g∗ f∗

is exact for every R-module N .

Proof. Suppose first thatA f→ B
g→ C → 0 is exact. Clearly g∗ is defined as ϕ 7→ ϕ◦g and similarly for f∗.

To show that g∗ is injective, suppose that ϕ ∈ ker(g∗). Then ϕ ◦ g = 0 which means that im(g) ⊆ ker(ϕ).
But im(g) = C since C is surjective. This means that C ⊆ ker(ϕ). Since trivially ker(ϕ) ⊆ C, we have that
ker(ϕ) = C which means that ϕ is the 0 map and we shown that ker(g∗) = 0.
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Now we want to show that im(g∗) = ker(f∗). Suppose that ϕ ∈ im(gast). Then there exists ψ : C → N
such that ψ ◦ g = ϕ. Precomposing with f gives ψ ◦ g ◦ f = ϕ ◦ f . But im(g) = ker(f)means that the left
hand side is 0 which means that ϕ ◦ f = 0 and thus ϕ ∈ ker(f∗).

Suppose that ϕ ∈ ker(f∗). Then ϕ ◦ f = 0. Define ψ : C → N by ψ(c) = ϕ(b) for any b ∈ B such that
g(b) = c. Clearly ψ ◦ g = ϕ. Showing ψ is well defined completes the prove. b ∈ B always exists for
any c ∈ C since g is surjective. Now suppose that b and b′ are both the preimage of c. Then g(b) = g(b′)
implies g(b − b′) = 0 which means that b − b′ ∈ ker(g). But ker(g) = im(f) implies b − b′ ∈ im(f).The
first isomorphism theorem tells us that B/ im(f) ∼= C since g is surjective. This means that b − b′ lie
in the same coset of B/ im(f) which means that in this isomorphism b and b′ gives the same element c.
This means that ψ is well defined. (Self-note: g takes b ∈ B to c ∈ C but we know that C ∼= B/ im(f) so
intrinsically g is well defined in terms of the quotient. The map from C to N is also obvious but we just
have to show that ψ makes sense with the quotient)

Now suppose that 0 → HomR(C,N)
g∗→ HomR(B,N)

f∗→ HomR(A,N) is exact. We first show that g is
surjective. Pick N = C/ im(g) and take ψ : C → C/ im(g) to be the quotient map ψ(c) = c + im(g). For
any b ∈ B, we have that ψ(g(b)) = g(b) + im(g) = im(g) which means that ψ ◦ g = 0 which implies that
ψ ∈ ker(g∗). But g∗ being injective means that ψ = 0which means that im(g) = C.

Now we want to show that im(f) = ker(g). Take N = C. im(g∗) = ker(f∗) implies f∗(g∗(ϕ)) = 0 for all
ϕ : C → N = C which means that ϕ ◦ g ◦ f = 0. Take ϕ to be the identity map. Then g ◦ f = 0 and thus
im(f) ⊆ ker(g),

Now again take N = B/ im(f). Let ϕ : B → B/ im(f) be the projection. Clearly ϕ ◦ f is the zero map
since all of Amaps to im(f) in B/ im(f). This means that ϕ ∈ ker(f∗). But ker(f∗) = im(g∗) means that
there exists ψ : C → B/ im(f) such that ψ ◦ g = ϕ. This means that ker(g) ⊆ ker(ϕ). But since ϕ is the
projection, we have ker(ϕ) = im(f)which proves that ker(g) ⊆ im(f).
[AM94]
Theorem 7.1.3. Let f : A → B be a ring homomorphism. LetM be an A-module. Let N be a B-module. Then
we have the following isomorphism:

HomB(M ⊗A B,N) ∼= HomA(M,N)

Proof. Notice that this is well defined since f is a ring homomorphism taking A to B,N is naturally also
an Amodule by restriction of scalars. In particular N is an Amodule by defining the action on N to be
∗ : A×N → N by

r ∗ n = f(r) · n
where f(r) · n is the action of f(r) ∈ B on n ∈ N .
Define (·)+ : HomB(M ⊗A B,N) → HomA(M,N) by mapping u :M ⊗A B → N to

u+(m) = u(m⊗ 1)

Similarly, define (·)− : HomA(M,N) → HomB(M ⊗A B,N) by mapping v :M → N by
v−(m⊗ b) = v(m) · b

Showing that (u+)− = u and (v−)+ = v completes the proof.
We have that

(u+)−(m⊗ b) = u+(m) · b = u(m⊗ 1) · b
Since N is a B module we have that u(m⊗ 1) · b = u(m⊗ b)which means that (u+)− = u.
We also have that

(v−)+(m) = v−(m⊗ 1) = v(m) · 1 = v(m)

which also proves that (v+)− = v.
Proposition 7.1.4. LetM be an R-module. Let I be an ideal of R. Then we have

M ⊗R
R

I
∼=

M

IM

[DF10] P.370
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Proof. Consider the exact sequence
0 I R R/I 0

given by the inclusion map and the projection map. Applying the right exact functor −⊗RM , we have
the following exact sequence:

0 I ⊗RM R⊗RM R/I ⊗RM 0

which simplifies to
0 I ⊗RM M R/I ⊗RM 0

Now the image of the map I ⊗RM is precisely IM . The exactness of the sequence implies that

M

IM
∼=
R

I
⊗RM

Since the tensor product is commutative in the sense that M ⊗R N ∼= N ⊗R M , we thus obtain the
required result.
Proposition 7.1.5. Let f : A → B be a ring homomorphism. IfM is a free A-module of rank n, thenM ⊗A B
is a free B-module of rank n.

Proof. Write M =
⊕n

i=1A for some indexing set I . Since tensor products distribute over direct sums,
we can perform the distribution n times to obtain

n⊕
i=1

(A⊗A B) =

n⊕
i=1

B

and so we are done.
Proposition 7.1.6. LetM be an finitely generatedR-module. Then there exists a free module

⊕n
i=1R and a map

n⊕
i=1

R→M

such that the map is surjective.

Proof. We take the definition of a finitely generated R-module as: there exists a1, . . . , an ∈ M such that
for all x ∈M , there exists r1, . . . , rn ∈ R such that∑n

k=1 rkak. Now it is easy to see that the module
n⊕
k=1

Rak

has a surjective map toM simply by (r1, . . . , rn) 7→
∑n
k=1 rkak.

Definition 7.1.7. Trivial Extension LetR be a ring andM anR-module. Define the trivial extension ofR
byM to be the additive group R⊗M together with multiplication defined as (r, x)(s, y) = (rs, ry+ sx)
for r, s ∈ R and x, y ∈M . This ring is denoted as R⋉M . [Kun86]
Proposition 7.1.8. Let R be a ring and I an ideal of R. Let m be a maximal ideal. If m does not contain I then
Im = Rm both as localization of R-modules. Ifm contains I , then Im ̸= Rm.

Proof. Suppose that m does not contain I . Since m is a maximal ideal, Rm is a local ring with maximal
ideal m. Take i ∈ I such that i /∈ m. This is possible since m does not contain I . Then since m is the
unique maximal ideal of Rm, imust be a unit. This means that Im contains a unit. Since I is an ideal of
R we have Im is an ideal of Rm since localization commutes with quotients. Any ideal that contains a
unit is the whole ring and thus we have that Im = Rm.
Now suppose that I ⊆ m. Suppose that Im = Rm. Since 1 ∈ Im we must have 1 = r/s for some r ∈ I
and s ∈ R \m. By definition of equality, there must exists some t ∈ R \m such that ts− ti = 0where ts
and ti ∈ I . Now since R \m is a multiplicative set, we have that t, s ∈ R \m implies ts ∈ R \m. Then
this means that ti ∈ R \m. A contradiction since this means ti /∈ I even though ti ∈ I by definition of
an ideal.
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7.2 Transcendental Field Extensions
Recall what it means for a field extension to be transcendental. Most of this section refers to [Eis07].
Definition 7.2.1. Transcendental Field Extensions Let L/K be a field extension. We say that L/K is a
transcendental field extension if there exists an element x ∈ L such that x is transcendental over K. In
other words, x does not satisfy any univariate polynomial with coefficients inK.
Similar to the basis of vector spaces, we can also define a basis for transcendental field extensions. As
one can see, transcendental means that no polynomial relation is satisfied. Thus the concept of linear
independence should also be defined in a similar fashion. This leads to the notion of algebraic indepen-
dence.
Definition 7.2.2. Algebraic Independence Let L/K be a field extension. We say that a subset B of L is
algebraically independent overK if the elements ofB do not satisfy any non-trivial polynomial relations
with coefficients inK.
This definition is slightly different from the one given in [Eis07]. But it is more intuitive to define it this
way. One can also show that the definition in [Eis07] and the one above are equivalent, which we will
omit here.
Definition 7.2.3. Transcendence Basis Let L/K be a field extension. A transcendence basis of L/K is a
subset B of L such that B is algebraically independent and L/K(B) is an algebraic extension.
Indeed if S/K(B) is an algebraic extension, it means that we can no longer add any transcendence ele-
ments to our setB, so thatB is maximally algebraically independent. We will again, omit the proof here
that any two transcendence basis have the same cardinality.

7.3 Filters, Ultrafilters and Principal Filters
Filters often appear in more set theoretic subjects such as topology, set theory and algebra. Ultrafilters,
one specific type of filter is used to form the ultraproduct of a collection of algebraic structures so that a
lot of weird things will occur that will not appear when one considers only the prototypical examples.
Definition 7.3.1. Filters Let X be a set. A filter F of X is a family of subsets of X such that

• X ∈ F and ∅ /∈ F

• If A ∈ F and B ∈ F , then A ∩B ∈ F

• If A ∈ F and A ⊆ B, then B ∈ F

The idea of a filter is to think of the collection F of subsets of X as the collection of all large subsets of
X . Indeed the third condition shows that any larger subset of subset in F must also lie in F .
Definition 7.3.2. Ultrafilters LetX be a set. An ultrafilter onX is a filterF onX such that ifA ⊆ X then
either A or X \A is an element of F .
Intuitively, ultrafilters on a setX is a maximal filter on the setX . This idea is precisely characterized by
the condition that at least one of A ⊆ X and its complement must lie in the filter.
Lemma 7.3.3. Let X be a set. Let F be an ultrafilter. If A ∪B ∈ F then either A ∈ F or B ∈ F .

Proof. Suppose for a contradiction that both F and G are not in F . Then by the property of ultrafilter,
X \ F and X \ G are in F . Then by property 2 of a filter, (X \ F ) ∩ (X \ G) ∈ F . This means that
X \ (F ∪ G) ∈ F . But X \ (F ∪ G) ∩ (F ∪ G) = ∅ ∈ F by the same property so we have reached a
contradiction.
Principal filters are essentially the smallest filter containing a chosen subset.
Definition 7.3.4. Principal Filters Let X be a set. A principal filter on X is a filter of the form

F = {A ∈ P (X) | A ⊇ S}

for a fixed subset S of X .
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Lemma 7.3.5. Let X be a set. Then a principal ultrafilter on X is precisely a filter of the form

F = {A ∈ P (X) | A ⊇ {p}}

for some p ∈ X .

Proof. It is clear that a filter of the above form is an ultrafilter since {p} ∈ F implies that for any S ⊆ X ,
either p ∈ S or p ∈ X \ S so that at least one of S andX \ S lie inF . It is also clearly a principal filter by
definition.

Now suppose that G is an arbitrary principal ultrafilter. Then

G = {A ∈ P (X) | A ⊇ S}

for some fixed subset S ofX . I claim that S =
⋂
T∈G T . Clearly all T ∈ F are such that S ⊆ T so we have

S ⊆
⋂
T∈G T . Now since S ∈ G, we also have

⋂
T∈G

T =

 ⋂
T∈G\{S}

T

 ∩ S ⊆ S

and so we have equality. It remains to show that S is a singleton. If S is not a singleton, then S = B ⨿C
where neither B nor C are empty. In particular, B and C are not in G since B,C ⊂ S. By property
of an ultrafilter, X \ B ∈ G. By property 2 of a filter, we have that A ∩ (X \ B) = C ∈ G, which is a
contradiction.
Finally, we note that only principal filters can have sets in the filter that are finite.
Proposition 7.3.6. Let X be a set. Then an ultrafilter F on X is a principal filter if and only if it contains finite
sets.

Proof. Suppose that F is a principal ultrafilter. Then F clearly contains a finite set. Conversely, suppose
that F is an ultrafilter that contains a finite set S. Then apply 7.3.3 on singleton subsets of S a finite
number of times to obtain that a singleton must be in F .

7.4 Supplement to Example 4.1.7
We provide a proof that given a countable set of points in R, there exists a smooth function ϕ : R → R
such that ϕ hits them over N.

We have seen that bump functions can be used to create smooth functions.
Lemma 7.4.1. Let x1, x2 ∈ R with x1 < x2 and a, b ∈ R. Then exists a smooth function f : R → R such that
f((−∞, x1]) = a and f([x2,∞)) = b.

Proof. Without loss of generality, we may assume that a = 0 since we can translate the function up by a
and construct a smooth function starting at height 0 and reaching height b − a. By a similar reasoning,
we can scale the function so that without loss of generality, we start at x1 = 0 and x2 = 1.

From MA3H5, we have seen the smooth function

g(x) =

{
e−

1
x if x > 0

0 if x ≤ 0

Define the function f : R → R by
f(x) =

g(x)

g(x) + g(1− x)

This function is smooth because g is smooth and g is non-zero at the denominator. Also, for x ≤ 0, we
have that f(x) = 0 because g(x) = 0 and g(1 − x) ̸= 0. We have for x ≥ 1, f(x) = 1 since g(1 − x) = 0

leaves f(x) = g(x)
g(x) and g(x) ̸= 0.
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Theorem 7.4.2. Let (yk)k∈N be a sequence inR and (nk)k∈N a strictly ascending sequence inN. Then there exists
a function f : R → R such that f(nk) = yk.

Proof. Let y0 = 0 for convenience. By the above lemma, we can construct smooth functions fk : R → R
such that fk((−∞, nk−1]) = 0 and fk([nk,∞)) = yk − yk−1. Now define f : R → R by

f(x) =

∞∑
i=1

fi(x)

We show that this function is smooth by showing that for all x ∈ R, x has a neighbourhood such that
f in that neighbourhood is smooth. (This is reminiscent to defining smooth functions on manifolds,
in our case, the “charts” are neighbourhoods). Notice that since (nk)k∈N is a strictly ascending infinite
sequence, there exists nt ∈ N such that x < nt. Now for any y ∈ (−∞, nt), we have that fs(y) = 0 for all
s ≥ t by construction. This means that in the domain (−∞, nt), f becomes a finite sum

f(x) =

nt∑
i=1

fi(x)

Since each fk(x) is smooth, f is smooth in this neighbourhood of x. Thus for all x ∈ R there is a neigh-
bourhood of x for which f is smooth.

Now for any k, we have that

f(nk) =

k∑
i=1

fi(nk) = yk − y0 = yk

and so we conclude.
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