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1 Introduction

1.1 Motivation

Varieties play a major role in algebraic geometry. They are defined as the zero set of a collection of poly-
nomials. Geometrically, this corresponds to the locus drawn out by the polynomials. Since varieties bear
similarity to manifolds in the sense that there is interplay between algebra and geometry, it would be
nice to collect some useful techniques from manifolds and apply it to varieties. One such notion is that
of differential forms.

Formally, smooth differential 1-forms are smooth sections of the cotangent bundle. In other words, there
is a smooth assignment of cotangent vectors for each point of the manifold. One can think of smooth
differential 1-forms as a “differential operator” for functions on the manifolds. For the construction of
1-forms on varieties, we will mimic the more algebraic approach of thinking of differential forms as op-
erators instead of the geometric picture of assigning cotangent vectors, even though there is indeed a
notion of tangent space for varieties in textbooks such as [ ]and [ ].

The resulting construct is a module, called the module of differential forms. In particular, it is universal
in the sense that any other “differential operators” (called derivations in our case) factors through the
module.

1.2 Preliminaries

The essay will make use of homological algebra / commutative algebra while developing the machinery.
Since our motivation of the module comes from the cotangent bundle in manifolds, some basic knowl-
edge on manifolds and varieties are needed, specifically that of tangent and cotangent spaces. Useful
background knowledge on modules has been given a dedicated section in the appendix. While other ref-
erences of commutative algebra and homological algebra can be found in [ 11 ]and [ ]-
As for the theory of manifolds and varieties, | ]and [ ] respectively will suffice.

1.3 Objectives

The goal of this essay is to serve as an expository to basic results concerning the module of Kahler dif-
ferentials. We will also see how good this cotangent bundle for varieties mimic that of manifolds. Some
examples will also be illustrated showing that the module of Kahler differentials can be used to recover
the cotangent space of the variety of a point, albeit somewhat convoluted.

Specifically, the second chapter delves into the heart of the essay: Derivations and the module of Kéhler
Differentials, as well as developing basic machinery to calculate the module such as the two exact se-
quences. The third chapter is a showcase / discussion of applications of the module. We will also see a
construction of the module of Kahler differentials on coordinate rings. In the fourth and final chapter,
we compare the module of Kéhler Differentials with that of manifolds, and show that while it fails to
become the “same” construct, we can still recover the cotangent space of varieties as classically defined
in standard algebraic geometry textbooks.
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2 Kaihler Differentials

The goal of this section is to define the derivations and the module of Kahler differentials, as well as
seeing some of its first consequences such as the two exact sequences. To show the existence of the
module of Kihler differentials, we will see two different constructions of the module and then exhibit
that they both satisfy the universal property.

2.1 Derivations

We begin with the definition of derivations. It will serve as the base of our discussions not only for the
module of Kihler differentials, but also for manifolds.

By a ring, we mean that it is a commutative ring with identity 1 # 0.

Definition 2.1.1 (Derivations). Let A be a ring and B an A-algebra. Let M be a B-module. An A-
derivation of B into M is an A-module homomorphism d : B — M such that the Leibniz rule holds:

d(ble) = bld(bg) + d(bl)bg
for b1, b, € B. Denote the set of all A-derivations from B to M by
Ders(B,M) ={d: B— M | disan A derivation }

This is reminiscent of properties of a derivative. Indeed, from the above definition, take A = R and
B = M =R[zy,...,2,]. Then the formal partial derivatives 6%1 Rz, ..., 2n] = Rz, ..., 2,] defined
by

k ks Ky of k ki—1 K
fla) = Z Aloy oo T 0 Ty e Ty = - = Z Qky .. ey kit o @ Cee Ty
k1,0,

ek ky,....kn

(provided k; > 1, otherwise the derivative is zero on that term) is R-linear and satisfies the Leibniz rule.
These are the two fundamental properties that a derivative should possess.

Recall that derivatives in calculus also satisfy the quotient rule and the fact that constant maps have zero
derivatives. Instead of enforcing these requirements on the definition, we can show that the they can be
derived from the consequences of d being linear and that it satisfies the Leibniz rule.

Lemma 2.1.2. Let A be a ring and B an A-algebra Let M be a B-module. Let d : B — M be an A-derivation.
Then d(a) = 0 forall a € A.

Proof. Since d : B — M is an A-module homomorphism, d(a-1) = a - d(1). We also have, by the Leibniz
rule that d(1) = 1-d(1) + d(1) - 1 = 2d(1) which implies d(1) = 0. Thus d(a - 1) = a - d(1) = 0. O

The quotient rule is not so well defined in a general algebra. Indeed a ring does not necessarily have
the notion of division and fractions. However recall that there is a systematic way of creating quotient
elements in a ring. This is called localization.

Proposition 2.1.3. Let B be an A-algebra. Let S be a multiplicative set of B. Let M be an S~1(B)-module. Then
for any A-derivation d : B — M, there exists one unique way of extending the derivation tod : S™'B — M,

defined by the formula:
(b) sd(b) — bd(s)
dl-)=—"—55—"
s s
Proof. Temporarily denote a derivation from S~!B to M by D. Suppose that b € B and s € S. Notice
that D has to satisfy the following:

d(b) = D(b) = D (sb> = gD(s) 4D <i’>
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Thus any A-derivation S~!B to M must satisfy the above formula. This shows that there can only be
one unique way of extending it.

For existence, we just have to show that it is a well defined map. Suppose that ¢ = 2. This means that
there exists ¢ € S such that ¢(sa — rb) = 0. The goal is to show that

rd(a) —ad(r)  sd(b) — bd(s)

r2 52

or in other words, there exists p € S such that p (s*(rd(a) — ad(r)) — r*sd(b) — bd(s)) = 0. I claim that
p = ¢° does the job. Indeed we have that

¢* (s*(rd(a) — ad(r)) — r?sd(b) — bd(s)) = ¢*(sad(rs) — rsd(as) — rbd(rs) + rsd(br))
= ¢*((sa — rb)d(rs) + rs(d(br — as)))
= rsq®d(br — as)
Now in fact, ¢?d(br — as) = 0 because
@?d(br — as) = q(qd(br — as))
= q(d(q(br — as)) — (br — as)d(q))

=0
Thus we conclude. O
We can see that Derg(R[z1, ..., z,], R[z1,...,2,]) has more than just the standard partial derivatives
from the module structure. For examples, the sum of partial derivatives
0 0
— R ey T = Ry, .o 2y
T

defined by f — % + 8%. This is because of the extra structure of Der 4 (B, M) as a B-module.

Lemma 2.1.4. Let A be a ring and B an A-algebra. Let M be a B-module. Then Der (B, M) is a B-module
with the following operations:

o Addition is defined by sending dy,dy : B — M to (d1 + dg2) : B — M that maps b to d1(b) + da2(b).
o The identity is given by the zero map 0 : B — M given by b — 0x.

o Left action is defined by - : B x Dera(B, M) — Ders(B, M) that sends b € Bandd : B — M to
(bd) : B — M defined by w — b - d(u).

Proof. Firstly, Der4(B, M) is an abelian group. We check the group axioms.

e Closure: Leta € Aand by,b, € B. di +dy : B — M is an A-module homomorphism because

(d1 -+ dg)(abl —+ bg) = dl(abl + bg) + dg(abl + bg)
= adl(bl) + d1 (bg) + adg(bl) + dg(bg)
= a(d1 + dg)(bl) + (d1 + dg)(bg)

Finally, the Leibniz rule is satisfied because

(d1 + d2)(b1b2) = d1(b1b2) + d2(b1b2)
= bldl(bz) + dl(bl)bg + b1d2(b2) + dg(bl)bg
= b1(d1 + d2)(b2) + (d1 + d2)(b1)b2
o Associativity: Follows from the fact that M is a group

e Identity: The zero map is the identity since forany d : B — M, d+0: B — M sends b to d(b) and
thusd +0 =d.

e Inverse: For each d : B — M the maps sending b to —d(b) is an inverse



Algebraic Differential Forms

e Abelian: Follows from the fact that M is abelian.

Finally, left action is defined by - : B x Dera (B, M) — Dera(B, M) thatsendsb € Band d: B — M to
(bd) : B — M defined by v — b - d(u). Associativity and identity is clear. O

However, second order derivatives (which are compositions of the first order partial derivatives) are not
derivations! Indeed they satisfy not the Leibniz property but instead, we have that

) _ 0 (0L, o0y _ 1, 000, 0, P

o (’Mixj 8£Cj 8331 8:162 8(Ej 8xixj

Gxixj 8:162

al'jg 8Ij

which is in general a more complicated identity than the Leibniz rule.

2.2 Kaihler Differentials

We now define the module of Kahler Differentials which is the main object of study. For each A-
derivation d from an A-algebra B to a B-module M, d factors through a universal object no matter
what d we choose. This is the content of the following definition.

Definition 2.2.1. Kahler Differentials Let A be a ring and let B be an A-algebra. A B-module Q7 /a tO-
gether with an A-derivation d : B — Q} /4 is said to be a module Kéhler Differentials of B over A if it
satisfies the following universal property:

For any B-module A, and for any A-derivation d’ : B — M, there exists a unique B-module homo-
morphism f : Q} /4 — M such thatd’ = f od. In other words, the following diagram commutes:

d
B —= Qp,
R
M

The following lemma restates the universal property in a more categorical way.

Lemma 2.2.2. Let A be a ring and B an A-algebra. Let M be a B-module. Then there is a canonical B-module
isomorphism
Homp(Qp, 4, M) = Der 4(B, M)

defined via the universal property of the module of Kihler Differentials.

Proof. Fix M a B-module. Let d’ € Ders(B,M). By the universal property of QL /a(M), there ex-
ists a unique B-module homomorphism f : QF sa — M such that ’ = f od. This gives a map
¢ : Dera(B, M) — Homp(Q},,, M) defined by ¢(d') = f.

Conversely, given a map g € Homp(Qj /4> M), pre-composition with d gives a pull back map d* :
HomB(Q}B/A, M) — Dera(B, M) defined by d*(g) = g o d. These map are inverses of each other:

(d" o ¢)(d) = d*(f)
— f od
=d (By universal property)

and (¢ o d*)(g) = ¢(g o d) = g. Thus these map is a bijective map of sets.
It remains to show that d* is a B-module homomorphism. Let f, g € Homp(Q} s M ).
e d*(f+g)=(f+g)odisamap
b d(b) T F(d(B)) + g(d(0))
forbe B. d*(f) +d*(9) = fod+ godisamap

b= f(d(b)) + g(d(b))

thus addition is preserved by d*.
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e Letu € B. We want to show that d*(u - f) = u - d*(f). The left hand side sends an element b € B
by
b ) B - £(d(b))
The right hand side sends b — u - f(d(b)). Thus proving they are the same.

And so we have reached the conclusion. O

As any category theorist will realize, this is almost the same saying the functor Der4 (B, —) : gMod —
pMod is representable via the module of Kéhler Differentials. But of course we neither demonstrated
that Der 4 (B, —) is a functor, nor the fact that the above isomorphism is natural in M. For our purposes,
the above lemma and its content will suffice.

As always, such a definition via the universal property does not show the existence of QL /4 for any
appropriate choice of A, B. In the following, we shall demonstrate two different constructions of the
module with two different purposes.

Proposition 2.2.3. Let A be a ring and B be an A-algebra. Let F be the free B-module generated by the symbols
{d(b) | b € B}. Let R be the submodule of F generated by the following relations:

° d(a1b1 + a2b2) — ald(b1) — agd(bg)for all b1,b0 € B and ai,as € A
° d(b1b2) — bld(bg) — bgd(bl)fm” all bl, by € B
Then F/R is a module of Kihler Differentials for B over A.

Proof. Clearly F/R is a B-module. Moreover, define d : B — F/R by b + d(b) + R. This map is an
A-derivation since the following are satisfied:

e dis an A-module homomorphism: Let b1,b, € B and ai,a2 € A. Then a1b; + azbs is mapped to
d(a1by + azbs) + R. We know from the relations that d(a1b; + asbs) + R = a1d(by) + a2d(b2) + R.
Thus d is A-linear.

e d satisfies the Leibniz rule: Let b1, by € B. Then by b, is mapped to d(b1b2) + R. Since d(b1b2) + R =
b1d(bs) + d(b1)ba, we have that by by is mapped to b1d(bz) + d(b1)b2 + R.

This shows that d : B — F//R is an A derivation.

It remains to show that (F//R, d) has the universal property. Let M be a B-module and d’ : B — M an
A-derivation. Define amap f : F — M on generators by d(b) — d’(b) and extending from generators to
the entire module. This is a B-module homomorphism by definition. Clearly f o d = d'. It also unique
since f is defined on the generators of F'.

Finally we want to show that f projects toamap f : F//R — M. This requires us to check that f(d(a1b; +
azbs)) = f(a1d(by) + azd(b2)) and f(d(b1bs)) = f(b1d(b2) + d(b1)b2). But this is clear. Since f : F — Ris
a B-module homomorphism, we have

f(d(a1b1 + agba)) — f(ard(br) + azd(b2)) = 0
and
J(d(b1b2)) — f(brd(b2) + d(b1)ba) = 0

implying f sends d(a1b1 +a2bs) —a1d(b1) — a2d(b2) and d(b1b2) — b1d(b2) — d(b1)b2 to 0. Since we checked
them on generators of R this result extends to all of 2. Thus we are done. O

Aside from the construction through quotients, we can also express the module explicitly via the kernel
of a diagonal morphism. Using the universal property, we see that all these constructions are the same.

Proposition 2.2.4. Let A be a ring and B be an A-algebra. Let f : B @ 4 B — B be a function defined to be
f(b1 ®4ba) = byby. Let I be the kernel of f. Then (I/1?,d) is a module of Kihler Differentials of B over A, where
the derivation is the homomorphism d : B — 1/1? defined by db=1® b —b® 1 (mod I?).
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Proof. We break down the proof in 3 main steps.
Step 1: Show thatker(f) =(1®b—-b®1|be B).
Write ] = (1@ b—b®1|b € B). For any generator 1 ® b — b ® 1 of I, we see that

FA®b—b®1)=0
Thus I C ker(f). Now suppose that }_; ; b; ® b; € ker(f). Then using the identity
bi®bj=bib; @1+ (@ 1)(1®@b; —b; ®1)

and the fact that b;b; = 0 (because 0 = f(b; ® b;) = b;b;) we see that

Dobi@b =Y (iol)(1eb -bol)

0,J 0,J
Since each 1 ® b; — b; ® 1 lies in ker(f), we conclude that ), ; b; ® b; so that I = ker(f).
Step 2: Check that d : B — I/I? is an A-derivation.

e d: B — I/I?is an A-module homomorphism: Let ajas € A and by, b2 € B. Then we have

d(a1b1 + agbg) =1® (a1b2 + agbg) — (a1b2 + (12172) ®1+ 12
=a1(1@b1) +ax(1@b) —ai(by @ 1) —ag(be @ 1) + I?
= a1d(bybs) + axd(biby) 4 I?

Thus we are done. (Notice that we did not use the fact that all the expressions are taken modulo
I?%)

e d satisfies the Leibniz rule: Let by, by € B. Then we have d(biby) = 1 ® byby — b1bs ® 1 + I? on one
hand. On the other hand we have

bid(b2) + bad(b1) =b1(1 @by — by ®1) + ba(1 @by — by @ 1) + I?
Subtracting them gives
d(bib2) — bid(ba) — bad(b1) =1 ®@b1ba — b1 ® by —ba ® by +bab1 ® 1
=(1®b -1 @)1 @by —by @ 1)+ I?
But (1®b; — b1 ® 1)(1 ® by — b @ 1) lies in I? thus subtraction gives 0.
Thus d is an A-derivation.
Step 3: Show that the universal property is satisfied.

Let M be a B-module and d’ : B — M an A-derivation. We want to find a unique ¢ : B — M such that
d=¢od.

Step 3.1: Construct a homomorphism of A-algebra from B ® B to B x M
Define ¢ : B ® B — B x M (Refer to 7.1.7 for definition of B x M) by

$(b1 @ ba) = (b1ba, bid'(b2))

and extend it linearly so that ¢(b1 ® ba + b3 @ bs) = ¢(b1 ® be) + ¢(bs ® ba). This is a homomorphism of
A-algebra since

e Addition is preserved: This is by definition.
[} d)(abl X bg) = ¢(b1 ® abg) = a¢(b1 ® bg): Letac Aand b; ® by € B®4 B. Then
(b(abl X b2) = (ablbg, ab1d'(b2))
=a- (b1 ® by)

(b1 @ abe) = (ab1be, byd (aby))
= (abyby, Gbld/(bQ))

Thus we are done.
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e Product is preserved: For uy,ug,v1,vs € B, we have

P((ur @ uz) - G(v1 @ v2)) = (uruz, urd' (u2)) - (viv2, vid' (v2))
= (U1UQ’U1’UQ7 U1UQU1d/(’U2) + vlvguld’(uQ))
= (ul’U1UQ’U2,U1U1d/(UQ’02))

= (urv1 ® uzvs)
Thus ¢ is a homomorphism of A-algebra.
Step 3.2: Construct ¢ from ¢.

Since ¢ is a map B ® B to B x M, we can restrict this map to I a result in a new map ¢ : I — B x M.
Notice that for 1 ® b — b ® 1 a generator of I, we have

P1Rb-bR1)=0¢(12b) —¢(b®1)
= (b,d'(b)) — (b,d'(1))
= (b,d'(b)) — (b,0)
= (0,d'(b))

Thus we actually have a map ¢ : I — M. Finally, notice that for (1@ u—u®1)(1®v —v® 1) a generator
of I?, we have

o(x )=</>(1®u—u®1)¢( Qv—v®1)
= (0, d'(w))(0,d (v))
= Z (0,0) (Mult. in Trivial Extension)
=(0,0)

which shows ¢ kills of 72 and thus ¢ factors through /12 so that we geta map ¢ : I/I> — M.

Step 3.3: Show that ¢ satisfies all the required properties.
For b € B, we have that ~ ~
o(d(b) =d(12b—b® 1+ I%) =d(b)

and thus d’ = ¢ o d. Moreover, this map is unique since it is defined on the generators of I, namely the
d(b) forb € B.

This concludes the proof.
Materials referenced: | 11 1 [ ] O

Despite being a more convoluted way to construct the module of Kihler Differentials, it turns out that
the advantage of this construction is that it generalizes well to the theory of schemes. Interested readers
are referred to [ ]-

Our first step towards computing the module of Kahler Differentials for coordinate rings comes from a
computation of the polynomial ring.

Lemma 2.2.5. Let Abearingand B = Az, ...,x,] so that B is an A-algebra. Then

B/A _@Bd x;)

In particular, the module 7}, B4 is a finitely generated B-module.

Proof. The fact that Q}, B4 is finitely generated directly follows from the claimed isomorphism. So let us
prove the isomorphism. Consider the map p : B — @,_, Bd(zy) given by

of of
f — <ax1d(£ﬂ1), ey 8xnd(.’lh,))
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where each partial derivative here is the formal derivative of f with respect to the variable. Now that by
choosing the function z, € B, we have p(zy) = (0,...,0,d(zx),0,...,0). Since each partial derivative is
B-linear and satisfies the Leibniz rule, the universal property of Q} /4 implies that there exists a unique

B-linear map ¢ : Qp,, — D), Bd(xy) that satisfies p = ¢ o d.

I claim that the map ¢ : ) _, Bd(wy) — Qp,, defined by

(91, 9n) Z grd(zk)
k=1

is the inverse of ¢. Notice that this makes sense because here we think of Q7 B4 as being generated by
d(b) for all b € B. It is evident that this map is B-linear. Now we have that

d(Y(grd(x1), - - -, gnd(zy) (ngd Ty )

= Z gro(d(zy)) (¢ is B-linear)
k=1

= gplar)
k=1

= gk(0,...,0,d(x),...,0,...,0)
k=1

= (g_ld(ﬂcl)7 ey gnd(zy))

Now since QL /4 is generated by the symbols d(f), an arbitrary element of O /4 1s givenby Soney wkd(fr)
for some ug, fr € B. Since ¢ and 1 are B-linear, it suffices to prove that (¢(d(f))) = d(f). We have that

P(o(d(f))) = ¢ (p(f))
¢<af A 1),,,,,§x‘id(xn)>

Z 8xk

The problem remains to show that d(f) = >;_; 5 8f —~d(zy). But this formula is true because d is B-
linear and satisfies the Leibniz rule. Thus ¢ and 1/) are mutual inverses so that we obtain the desired
isomorphism. Materials referenced: [ 11 11 ] O

Notice that throughout all of our definitions, there is not a single place where we have to define genuine
limits similar to that in analysis or calculus. Instead, we start with some algebraic objects such as rings,
algebras and module, bestowed maps between them with R-linearity and Leibniz rule, and we ended up
in a situation in analysis / calculus. it shows that we have captured the algebraic properties of derivatives
in the sense of calculus and are able to reproduce it here.

2.3 Transfering the System of Differentials

This section aims to develop the necessary machinery in order to compute the module of Kdhler Dif-
ferentials for coordinate rings. We will see explicit calculation of the cuspidal cubic, an ellipse and the
double cone to demonstrate how the two exact sequences can be used along with the Jacobian of the
defining equations of the variety to compute the module of Kéhler Differentials.

Theorem 2.3.1. First Exact Sequence Let B, C' be A-algebras and let ¢ : B — C be an A-algebra homomorphism.
Then the following sequence is an exact sequence of C-modules:

Q050 Lol Tl —— 0
where f and g is defined respectively as
fldpja(b) @ c) =c-decja(e(b))

10
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and
9(dcya(c)) = deyp(c)
and extended linearly.
Proof. Denote dp/4,dc/a,dc)p the derivations for Qj Jas QL /A0 Qr , respectively. Clearly g is surjec-

tive since for any cidc/p(c2) € QIC/B, just choose cidc/a(c2) € Qé/A. We just have to show that
ker(g) = im(f). It is enough to show that

0 —— Home (L, 5, N) —2— Home(QL,4, N) —— Home (R, ®5 C, N)

is exact by 7.1.2. Using the fact that Homc(Q}g/A ®pC,N) = HomB(Q}B/A, N) (7.1.3) and the fact that
Hom (0, N ) = Der4(B, N), we obtain the following commutative diagram:

0 —— Home (0L, 5, N) —— Home(QL,,, N) —— Home (R, ©5 C, N)

g

HomB(QlB/A,N)

R ———

IR

<IR—

0 —— Derp(C,N) —~— Ders(C,N) ————— Der4(B,N)

where u and v are obtained by going along the appropriate commutative squares. Now explicitly, we
have the following:

o The map wu is actually an inclusion. To see this, let us trace an element A € Der4(C, N). Under
the far left vertical isomorphism, % is send to the unique map 7 : Qf sptolN such that h = no

dc/p- Precomposing with g* gives the map no g : Qf /4 — N. Then under the middle vertical
isomorphism, we obtain a unique map & : C'— N such that k = (n o g) o dc/4. But notice that

k=no(godcja) =nodc/p="h
so k = h and v is indeed an inclusion.

o The map v is actually a restriction of scalars. To see this, let us trace an element y € Der4(C, N).
Under the middle vertical isomorphism, y is sent to the unique map v : Qf, /4 — N such that
y =1 odgya. Precomposing with f* gives the map i o f : Qp /4 ®B C — N. Under the top right
isomorphism, we notice that we can think of it as there is a B-linear inclusion . : Q} /A Q3 A9C
defined by d(b) — d(b) ® 1¢. Let us the latter approach. Because ¢ is B-linear, the map ¢ o f o
is also B-linear. By the universal property of Q} /4, We obtain a unique map z : B — N such that
z=1o forodp, . I claim that the following diagram (consider all module homomorphisms as
B-linear) commutes:

dp/a

B Q}B/A : Q}B/A®C
NG L
C s 0y,

ia!w
e

Now the top left and bottom right triangles commute by the universal property of the module
of Kéhler Differentials. Let dg,4(b) € Q}B/A. On one hand we have that (dc/4 o €)(dp/a(b)) =

deya(é(b)) = f(dpa(b) ® 1¢). On the other hand we have that f(i(dp/a (b)) = f(d/a(b) ® 1¢)
and so the top right square commutes. Thus the diagram commutes. Now I want to show that
z = y o ¢. Now this is why maths is beautiful:

z=1oforodpg=vodoao€odp/a=1vodcaodp=yog

This shows that the map v sending y to z = y o ¢ is indeed a restriction of scalars!

11
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Now let b € im(u). Then h is B-linear (u is just an inclusion). Thus im(u) C ker(v). Now let y € ker(v).
Then yo¢ = 0 (v is just a restriction). I claim that y is B-linear. This is done by considering the structure
of C'as a B-module. The module structure - : B x C' — C'is given by b - ¢ = ¢(b)c and this is similar for
N. So we have

y(b-c) = y(d(b)c) = y(d(b))c + d(b)y(c) = d(b)y(c) = b-y(c)

Thus y is B-linear. We conclude that im(u) = ker(v) so that the first exact sequence is indeed exact. [

Theorem 2.3.2. Second Exact Sequence Let A be a ring and B an A-algebra. Let I be an ideal of Band C = B/1I.
Then the following sequence is an exact sequence of C-modules:

yr oL 0sC Qb ——0

where 0 and f is defined respectively as
S(i+T1*) =d(i)®1
and
F(d(b) ® ) = ¢~ d(6(D))
and then extended linearly.

Proof. Notice that ¢ is well defined. Indeed, if i + I? = j + I?, then there exists hq,hs € I such that
i — j = h1hyo. Now we have that

6(i —j) = d(hh2) ®1
= hid(h2) ® 1 4+ had(h1) ® 1
=d(h2) @h1+1+d(h1)®@hy+ 1
=d(h2) ®0+d(h) ®0
=0

We can see that f is surjective. Indeed for any d(b+ 1) € Qlc/A, just choose d(b) ® 1 € Q}B/A ®p C. Then
fldd)y®1)=db+1I).

It remains to show that im(d) = ker(f). Notice that to prove the exactness of the sequence in question,
we just have to show the exactness of the following sequence (by 7.1.2):

0 —— Home(QL, 4, N) —1— Home(Q),, ©5 2) —— Home(I/12, N)

Using the fact that /1> ~ I @ £ (by 7.1.4) and Home(Qy,, ®p B/I,N) = Homp(Qp,,, N) (by 7.1.3)
we can transform this sequence into

0 —— Home(Q%,,, N) —— Home(Q),, ©5 £, N) —"— Home (&, N)

Homp(Qp,,, N) Homc (I ®p 2, N)
o Hompg(I, N)
0 —— Dera(C,N) ————— Dera(B,N) ———~—— Der4(I,N)

We need to show exactness between on Homp (2}, /a>N). uand v here are the given by their correspond-
ing commuting squares. Explicitly, we have that

e Since this sequence is derived directly from the first exact sequence, we note that the map v is
exactly the map v in the proof of the first exact sequence. Hence v is just a restriction of scalars.

e By employing the same strategy, one can show that the map w is also a restriction of scalars from
BtoI.

Now we want to show that im(v) = ker(w). Let h € im(v). Then there exists & € Dera(B/I, N) such that
h=hop. Now w(h) =hot=hopoiwhere:: I — B is the inclusion. We have that p o ¢ is the 0 map
hence w(h) = 0 and so im(v) C ker(w). Now let y € ker(w). Then y(i) = 0 for all ¢ € I. By the universal

12



Algebraic Differential Forms

property of quotients, there exists a unique map 3 : B/I — N such thaty = § o p. Thus y € im(v). We
conclude that im(v) = ker(w). O

A very nice application towards computing the module of differential forms is given by the second exact
sequence. For B = A[zq,...,z,]and C = ﬁ, we can use 7.1.5 and 2.2.5 to see that Q}B/A ®C =

.., Cdz;. By the second exact sequence 2.3.2, we see that

I n
Q)4 = coker <12 — @C’da:z)
i=1

Since I/1? is a C-module, by 7.1.6 there exists a surjective map ;" , Cde; — I/I2. In fact m = r since
I is finitely generated by fi, ..., f, and thus the map sends e; to f; for 1 <i <r.

Now consider the map
T I n
P Cdei — 3 — (P Ca
i=1 i=1

This is a map from a free module of rank r to a free module of rank n. So we can write this inan n x r
matrix. Since the map /12 — @, Cdx; sends f; to d(fi) = Sp_, oL tdzy, (by second exact sequence
2.3.2) and ¢; is sent f;, we have that J is the matrix

ofr ... Ofr
61}1 611
OHh .. Ofe
Oxy, 0Ty

Finally, since im(A — B — C) = im(B — ('), we thus have
coker(J) = Qg 4
which means that Qf, /. s just the cokernel of the matrix. This exposition can be found in | ].

This leads to our first calculations of the module of Kihler Differentials.

Example 2.3.3. Cuspidal Cubic: Part 1 Write V = V(y? — 23) C A2 the vanishing locus of the cuspidal
cubic. Then the module of Kahler differentials Qalc[V] /¢ can be calculated using the above method of the

2,2
cokernel. An easy calculation shows that J is the matrix < 23; > . So the image of J is (—32?)dz & (2y)dy

and thus
. C[V]dz ® C[V]dy

1 ~
Qevie = ((—322)dz @ (2y)dy)

Example 2.3.4. Ellipse: Part 1 Write W = V(422 4+ 9y — 36) C AZ the vanishing locus of the ellipse.
Similar to the previous example, it is easy to see that

ol C[W]dz & C[W]dy
(CWD/C = ((8x)da @ (18y)dy)

1

Example 2.3.5. The Double Cone: Part 1 Write U = V(22 + y? — 2?) C A} for the vanishing locus of the
double cone. Again we can show that

~

gL o ClUJdz & ClU]dy & C[U]dz
COVE™ " 2ude & 2ydy © —22dz)

using the fact that the Jacobian matrix of the equation of the double cone is given by

J=(2z 2y (722))71

13
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3 Applications of the Module of Kadhler Differentials

3.1 Characterization for Separability

Recall that we say that a field F'/K is separable if the minimal polynomial of all &« € K has no repeated
roots in any splitting fields. There is also a close connection between separability and formal derivatives
because by taking derivatives we can detect whether a root has multiplicity > 2.

The module of Kahler differentials give a necessary and sufficient condition for a finite extension to be
separable. But before the main proposition, we will need a lemma.

Lemma 3.1.1. Let L/K be a finite field extension and Q7 /i the module of Kihler Differentials. Let f(b) =
cot+ecib+---+e b € Lforcy,...,cp, € Kandb € L. Then d(f (b)) = f'(b)d(b) where f'(b) is the derivative
of f(b) with respect to b in the sense of calculus.

Proof. Since f(b) is a finite sum, we apply linearity and Leibniz rule of d to get
F/(b) = d(co) +bd(cy) + c1d(b) + - - + b"d(cp,) + cnd(V7)

Since each ¢y, . .., ¢, € K, we obtain f'(b) = c1d(b) + - - - + ¢, - nb"~1d(b). Thus factoring out d(b) in the
sum, we obtain precisely the standard derivative in calculus, and that d(f(b)) = f'(b)d(b) O

We are ready for the main proposition of the subsection.

Proposition 3.1.2. Let K be a field and L/K a finite field extension. Then L/K is separable if and only if
Qe =0.
/K

Proof. Suppose that L/ K is separable. Suppose that b € L has minimal polynomial f € K|z]. f is sepa-
rable since L/ K is separable. By 3.1.1, we have that d(f(b)) = f/(b)d(b). But the fact that f is separable
implies that f/(b) # 0. At the same time we have f(b) = 0 since f is the minimal polynomial of b. This
implies that d(f(b)) = 0in QlL/K = 0. Since L is a field, and f’(b) # 0, we must have d(b) = 0 for all
b € L. This means that Q] ;- = 0.

If L/K is inseparable, then there exists an intermediate field E such that L/FE is a simple inseparable
extension. Since L/K is finite, L/E is finite and thus is algebraic which means that there exists some
Blt]

(p(8))

polynomial p € E[t] for which L = In this case, we have already seen that

gl o~ Ldt L

LIE= (p(Hydt) — (p/(t))

Since p/(t) = 0, we have that Q] /e = L # 0. By the first exact sequence 2.3.1, we have that QO /K Maps

surjectively onto Q; ,, # 0 which proves that Q] ;- is non-zero.
Materials referenced: | 11 ] O

This gives a very nice characterization of separability. Readers can find more in | Jand [ ]. To
extend this equivalence under the assumption that L/ K is algebraic instead of finite, one can show that
Q! preserves colimits in the sense in | ]. Namely that the functor F' : Algebra, — Modt from the
category of R-algebra to the category of T-modules where T is a colimit of a diagram in the category of
R-algerba preserves colimits. Then observe that an algebraic extension is the colimit of the finite subex-
tensions.

Analogous to the above result, there is a similar proposition for Der g (L) for when L/ K is algebraic and
separable. This is given by | ]

Proposition 3.1.3. Let L/K be an algebraic field extension that is separable. Then Der (L) = 0.
Proof. Suppose that D € Derg (L). If a € L, let p be the minimal polynomial of a. Then
0= D(p(a)) = p'(a)D(a)

by 3.1.1. Since p is separable over K, p'(a) # 0. Thus D(a) = 0 and so we are done.
Materials referenced: | ] O

This proposition will be of use at 4.1.7.
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3.2 Detecting Smoothness in Varieties

In manifolds, the the cotangent bundle is a vector bundle of cotangent spaces. Letm, = {f € C[V]|f(p) =
0} for a variety V, we have that m,,/m? is the cotangent space of V from [ ]. Motivated by the re-
lation between the cotangent bundles and the cotangent spaces of a manifold, we attempt to recover the
cotangent space of a variety from the module of Kéhler Differentials.

Combined with the following theorem, we see that by localization, we can see that we recover the cotan-
gent space, at least in the affine, non-scheme theoretic sense:

Theorem 3.2.1. Let B be a local ring which contains a field K that is isomorphic to B /m the residue field. Then
the map
m

as given in 2.3.2 is an isomorphism.

Proof. Using the second exact sequence 2.3.2, we have that
m/m? —2— Qp,x @B 52— Qp/myx — 0

But the third term is just QF, /rc Which is clearly just 0. Thus ¢ is surjective. Using the same tactic as in
2.3.2, all we have to do is to show that w : Derg (B, N) — Dery (m, N) given by the restriction of scalars
is surjective for all K-modules N.

Let b € B. I claim that b is a unique sum of an element in m and an element in B/m. Suppose that
b=oc1+my = cy+ mgforc,ca € K and my, mg € m. Then this implies that ¢; — c2 € m is a non-
unit. But ¢; —cz € K does not have an inverse if and only if ¢; —cy = 0 thus ¢; = ¢. This leaves m; = ma.

I claim that the map is surjective as follows. For h € Derg(m, N), define k € Derg (B, N) by k(b) =
k(c + n) = h(n) where ¢ + n is the unique representation of b using ¢ € R/m and n € m. Since the
decomposition b = ¢ + n is unique, the map k is well defined. It is moreover B-linear since k is linear.

For b1, by € B, we have that

d(blbg) = h(01m2 —+ comq + mlmg) (Write b; = ¢; + m; where ¢; € B/m and k; € m)
= Clh(mg) + Cgh(ml) + h(m1m2) = Clh(bg) + Cgh(bl) + h(O)
= Clh(bg) + Cgh(b1)

and

bld(bg) + bgd(bl) = (Cl —+ ml)h(mg) + (CQ + mg)h(ml)
= Clh(bg) + Cgh(bl)

where the second equality follows from the fact that 2(u) = 0 for u € m. Thus d is a derivation.

We can conclude that v is surjective so that we are done. Materials Referenced: | 10 ] O

We are almost ready in recovering the cotangent space. By considering the localization of a coordi-

nate ring C[V] with a maximal ideal m,, corresponding to points on the variety, we obtain a local ring

C[V]m, with maximal ideal again m,,. Then the cotangent space 4 as seen in [ ], is isomorphic to
P

Q}C[V]mp /¢ c[v],,, Cby the above theorem. Therefore what remains is to compute the module of Kahler

differentials for the localization of a coordinate ring.

Fortunately localization commutes with the construction of the module of Kéhler differentials:
Proposition 3.2.2. Let B be an algebra over A. Let S be a multiplicative subset of B. Then
STH0p 4 2 Q514

Proof. This is done in two steps.

Step 1: Qg1 5/ = 0.

15
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We have that for any u € S™!B, there exists some s € S such that su € B. Applying the canonical
derivation gives

sd(u) = d(su) (se SCB)
=0 (su € B)

Since s € S is invertible, we must have d(u) = 0. Thus Q}S‘—lB/B =0.

Step 2: Apply the first exact sequence.
By the first exact sequence 2.3.1 and apply it to C = S~! B, we obtain a surjective map

QIB/A XpB SilB — QE*IB/A
which by definition of localization of modules, is equal to
ST'%p4 = Qs-1pa
In order to show injectivity of this map, we show that
HOIIls—lB((2‘15vle/A7 N) — Hom571B(S_1Q}B/A, N)

is surjective for any S~!B-module N. Now the latter module is isomorphic to Hom(Q} /a4, N)by 713
Using 2.2.2, this is equivalent to showing surjectivity of the map

Der4(S™'B,N) — Dera(B, N)

But this is precisely the content of 2.1.3. So we are done.
Materials referenced: | ] O

In particular, the localization of of a coordinate ring with the maximal ideal recovers the cotangent space
of the variety:

Example 3.2.3. Cuspidal Cubic: Part 2 Let us compute the dimensions of the cotangent space of the
cuspidal cubic at different points.
Recall that the module of Kéhler differentials of the cuspidal cubic is given by

Qo - C[V]dx & C[V]dy
cvi/e (—3x2dx, 2ydy)

Write m;, = (« —p1, y — p2) the maximal ideal corresponding to the point (p1, p2) € V by Nullstellensatz.
To consider individual cotangent spaces of the variety, we need to first localize the module of Kahler

differentials: (Q}C[V] /C) .

Notice that for (p1,p2) # (0,0), m, does not contain the elements = and y. This means that z and y are
invertible in the localization. Thus within this localization, we can write the relation —3z2dx + 2ydy = 0
as dy = %dm. This kills of one of the generators in C[V]dx & C[V]dy since we can now express the
generator dy with the generator dx. And so we are left with

(Q<1C[V] /c) - = CV]m,dx

Clearly this is a free C[V],,,-module of rank 1. Using 3.2.1, we see that

my ClVlm,
mig - (Q<1C[V]mp/tc> OCIV]m, Tmy (Theorem 3.2.1)
(C V m
= Q¢ /c) AC[V]m, [m] . (Commtues with localization 3.2.2)
m P
ClV]m,
>~ (C[V]mpdl’ ®C[V]mp [m] L
P
ClV]m
s Sl
P
= Cdx (Residue field)

16
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which shows that 2% is a 1-dimensional vector space over C.
P

However when (p1,p2) = (0,0), things are different. Since localization commutes with quotients (by
3.2.2) and the module of Kéhler differentials, we obtain

QL ~ ClWVly)dz ® CV]a,y)dy
W /C = (=322)dz & (2y)dy)

ClV](a,y)

Gy dr® eV gy with kernel precisely

(z,y)

Now we claim that there is a surjection (chc[v] o) /c) -
z,y

(Q‘IC[V]w,y)/(C) TP (Q}C[V](w)/(c) Yy

In particular, it sends the basis elements dx — dx and dy — dy.

For surjectivity:
Any element in the codomain is of the form (k1 + (x,y))dz ® (k2 + (z,y))dy for ki, ks € C. Then by

considering the element kidx @ kody € (QﬁlC[V}(z ” /C), we see that it precisely maps to (k1dz & kody) =
(k1 + (z,y))dx ® (ko + (z,y))dy.

The kernel:

We know that f + (z,y) = (z,y) if and only if f € (z,y). Then fdx & gdy € (Q}C[V](w y>/<c) is mapped
to Odz & 0dy if and only if f, g € (z,y). This means that we can rewrite f and g into f = xf1 + yf2 and
g = xg1 + yg2 so that

fdz & gdy = a(frdz © gudy) +y(fodz @ gady) € (U, e) 2@ (Vg c)

Together with 3.2.1 and writing m = (z,y), we can conclude that

m

ClV] @,y

~J 1
3= (QC[V]@,y)/(C) AC[V](a.y) ) (Thoerem 3.2.1)
Ql
o ( (C[V](w’y)/(c) (Proposition 7.1.4)
1 1
(QC[V]<z,y>/C> z+ (QC[V]<z,y>/C> y
ClV](z,y) ClV](z.y)
o dr @ = dy The isomorphism we just proved
(z,y) (z,y) ( P JEP )
=~ Cdx @ Cdy (Residue field)

which shows that ;™% is a vector space of dimension 2 over C.
Materials Referenced: [ ]

While intuitively we know that the ellipse does not have singularities, we still have to be careful of the
fact that there are point where the tangent space is a vertical line or a horizontal line.

Example 3.2.4. Ellipse: Part 2 Recall that the module of Kéhler differentials for the ellipse 422 4+ 9y? = 36
is given by
ol .. CW]dz © C[W]dy
cwl/e = (8zdx, 18ydy)
Write m, = (z — p1,y — p2) for the maximal ideal corresponding to a point (p1,p2) on the ellipse. In a
similar fashion as above, we consider the localization

(%twnire),,

P

There are three cases to consider:

17
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Case 1: p1,p2 # 0. Then x and y are invertible in the localization (Qé[w] /«:) since z,y ¢ m,. Within

the localization, we can now write the relation 8zdx + 18ydy = 0 as dy = —iZdx thanks to y being

9y
invertible. Then
(91 ) - ((CIW]dz ® C[W]dy
cwi/e),, = (8zdz, 18ydy) ),

4
= C[Wlm,dz & C[W]p, (_Idx>

o (C[W]mpdz (4z/9y € C[W]mp)

which is free of rank 1.

Case 2: p; = 0 and so po = £2.
Unfortunately m, = (z,y — p2) means that z is no longer invertible in the localization, but we can still

invert y since y ¢ m,. So we write the relation as dy = %dm to get (Q}C[W] /c) = C[W],,, dx which is

again, free of rank 1.

Case 3: po = 0and so p; = £3.
This time m, = (z — p1, y) means that y is no longer invertible. However the way to go around this is to
instead write dx in terms of dy. Since z is invertible in the localization this time, we have dx = — Z—zdy.

A similar argument shows that (Qé[w] /C) = C[W]m,dy which is again free of rank 1.

We can conclude that for any point (p1, p2) on the variety, Q}C[W]m sc is free of rank 1. A similar argument
as that of the cuspidal cubic shows that the cotangent space has dimension 1 for any point on the ellipse.
Finally we return to the case of the double cone. Its calculations are fairly similar to that of the cuspidal

cubic. However since the double cone will have points on it that intersects the xz-plane or yz-plane, we
need to apply a similar method as to the one we saw for ellipses.

Example 3.2.5. The Double Cone: Part 2 Recall that the module of Kahler differentials of the double
cone z? + y* = 2% is given by
Q! ., ClU]dz & C[U]dy ® C[U]dz
cwy/e = (2zdz, 2ydy, —22dz)

Write m, = (z — p1,2 — p2, x — p3) the maximal ideal corresponding to a point p = (p1, p2, p3) on the
double cone. Notice that 2z, 2y, 2z € m, if and only if p; = ps = p3 = 0. We do a similar case by case

analysis as the above examples. There are three cases to consider for the localization (Q}C[U] /(C) .
mp

Case 1: (p1,p2,p3) #0

Then at least one of p1, p2,ps is non-zero. Correspondingly, at least one of x,y, z is invertible in the
localization. To illustrate, suppose that p; # 0. Then z is invertible in the localization and we can write
the relation as dr = Zdz — £dy. This means that we have written one generator in terms of the other
two, which means that now

(Q}C[Uw)m = ClU]m,dy ® C[U]m,dz

which shows that the module of Kéhler differentials is free of rank 2. Using 3.2.1 we have that

mp 1
— =0 C
m2 ClU]m,p /C BC[U]m,,

=~ ((C[U}mpdy (&%) (C[U]mpdz) ®C[U]m,p C
= (C[U]m,dy @cior,,, ©) @ (ClU]m, dz @cqoy,,, C)
= Cdy @ Cdz

which shows that m,,/m? has dimension 2 as a C-vector space. The case is similar for when y # 0 and

z # 0.
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Case 2: (p1,p2,p3) = 0.
Since localization commutes with quotients by 3.2.2, we have
0Ol ~ C[U](Ly,z)dx D (C[U](z,y,z) D C[U](w,y,z)dz
ClUl@,y.)/C (2xdx ® 2ydy ® —22dz)

Now we claim that there is a surjection from this module to

ClU)(zv.» ClU](z.y.2 ClU](zy,2
[]<,y,>dx@ [](’y’)dy@ []<,y,>dz
(x,y,z) (x,y,z) (%yaz)

that sends dz — dz, dy — dy and dz — dz.

For surjectivity:
Any element in the codomain is of the form (k1 + (z,y, 2))dz & (k2 + (z,y,2))dy & (k3 + (z,y,2))dz
for ki, ks, k3 € C. Then by considering the element kidx @ kady ® ksdz € Q}C[U](E L.y /Cr e see that it

precisely maps to k1dz @ kady + ksdz = (k1 + (x,y, 2))dx @ (ke + (z,y, 2))dy + (ks + (z,y, 2))d=z.
The kernel:
We know that v + (2,9, 2) = (z,y, 2) if and only if v € (z,y, 2). Then fdz @ gdy & hdz in the domain

is mapped to O0dz @ 0dy @ 0dz if and only if f, g, h € (x,y, z). This means that we can rewrite the three
functions as

[ =zfityfat+zfs
g =xg1+yg2+ 293
h =uxhy + yhg + zhs

so that

fdx @ gdy ® hdz = z(frdx ® g1dy ® h1dz) + y(fadx @ gady & hadz) + 2(fsdr ® gsdy ® hsdz)
= (Qé[U](mJAZ)/C) T® (Qé[U](m,y‘Z)/C) Y ® (Qé[U](m,y,Z)/(C) <
and that (Q}C[U](w,y,z)/c) r® (Q}C[U](m,y,z)/(c) y® (Q}C[th,y,z)/c) z is the kernel of this map.

Now we have an isomorphism

Q

1 3

(C[U](:v,y,z)/(c ~ @ C([U](lvya)z) dl'l
1 1 1 . z, Y,z
(QC[U]w,y,z)/C) r® (QC[U](m,y,z)/C> yo (QC[U]m,y.z)/C) ==t Y

(where we write 1 as z, z2 as y and x3 as z for simplicity).

Together with 3.2.1, and writing m = (z, y, z), we can conclude that

mo 1 C[U](w,yz)
W = (QC[U](%%Z)/C> ®(C[U](I=y’z) m (Theorem 321)
Ql
& ClU Gy /€ (Proposition 7.1.4)

(Q}C[U](m,y‘z)/d T (Qtlcw](m‘y,z)/@ ye (Q}cm(w,y,z)/C) z
2 ClUl,2) e

= @ (‘,I:’ y7 Z) ’

i=1

= Cdx @ Cdy @ Cdz
which shows that the cotangent space at the origin has dimension 3.
This matches nicely with the geometric picture of the double cone. Every non-zero point on the double
cone has cotangent space of dimension 2.

Recall that a point on the variety is singular if the dimension of the cotangent space is strictly greater
than the dimension of the variety. The module of Kahler Differentials gives us a way to find out which
points are the singularities of the varieties by analyzing the Jacobian of the equations defining the variety
(Indeed the Jacobian is encoded in the module of Kahler Differentials as the quotient relation).
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4 Relation of the Module of Kiahler Differentials with Manifolds

The previous section showed that given the module of Kéhler differentials over a coordinate ring, we
can determine the dimension of the cotangent space of the corresponding variety, at different points.
In the context of manifold theory, smooth 1-forms are smooth sections of the cotangent bundle, while
we can recover the cotangent space of point of the manifold from the cotangent bundle. This motivates
the following section. In particular, we compare the two constructions and would like to find out how
similar are the two.

4.1 The Global Case: Vector Fields and Smooth 1-Forms

We have encountered in MA3H5 Manifolds the definition of vector fields and 1-forms. It has been done
in a very geometric way by visualizing a smooth assignment of tangent / cotangent vectors for each
point on the manifold. There is also a very algebraic way of describing the tangents that reveals more
structure on these vectors.

The below definition is given in [ ] P.136.

Definition 4.1.1. Smooth Vector Field Let M be a smooth manifold. A smooth vector field is a smooth
section X : M — T'M from M to the tangent bundle 7M. The set of all smooth vector fields is denoted

by X(M).

We will not prove that X (M) has the structure of a vector space here and we will take this fact for granted.
Interested readers can refer to [ ].

If we take the R-algebra C°° (M) as a module over itself, it makes sense to talk about the set of all deriva-
tions Derg (C'*° (M), C>°(M)) from the R-algebra to itself. Let us denote this by the shorthand notation
Derg(C>°(M)). Note that here we are talking about derivations of the algebra, not derivations at a point
p of the manifold, as noted in [ 1 P17.

[ | gave an isomorphism between the vector spaces X (M) of all smooth vector fields and Derg (C*°(M))
in the case M = R™. It also gave out steps in how one would go to prove this for general smooth mani-
folds.

Proposition 4.1.2. Let M be a smooth manifold. The map
¢ : X(M) — Derg(C>(M))
that sends X w— (f — X f) defines an isomorphism of vector spaces.

Proof.

Step 0: ¢(X) is a derivation.

By definition we have that ¢(X)(f) = X f. We want to show that X f € C*°(M). Let (U, ¢ = (z!,...,2"))
be a chart on M. Then X can be written as 3__, a’52; for some C™ function @' in the chart. It follows
that Xf = " a’ g {i is C°°. Since M can be covered by such charts, we have that X f is C°° on M.
¢(X) is R-linear and satisfies the Leibniz rule since the partial derivatives % satisfies them on a local
expression of X. This means that X also satisfies them.

Step 1: ¢ is a C°°(M)-linear map.

Let X,Y € X(M). Forany f € C°°(M) and p € M, we have (X, + Y,)(f) = X,(f) + Y,(f) since T, M
is a vector space. This means that as p varies, we have (X +Y)(f) = Xf + Y f. X +Y is smooth since
smooth sections sum to smooth sections.

Now let g € C°°(M). We want to show that ¢(gX)(f) = g¢(X)(f) for any f € C°°(M). But we have on
local coordinates:

9X(f) = gzalai = Zga’aa{i = (9X)(f)
i=1 i=1
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Step 2: ¢ is injective.

Suppose that X € X(M) is such that X f = 0 for any f. Let (U,¢ = (z*,.. )) be a chart. On the
charts, X f can be expressed as X f = >
than 1. Then we have that0 = X f = cl af whlch shows that ¢ must be zero. We can do the same thing
for ¢2,...,c" to show that locally, ¢! = --- = ¢ = 0. Since M can be covered by such charts, we have
that X = 0.

Step 3: Define a new map D, and show that it is well defined. B

Let D € Derg(C>(M)). Define D), : C3; , — Cf7 by Dy ([f]) = [Df] where f is any global extension of f
(this is possible by partition of unity). We want to show that for different choices g, h € [f], [Dg] = [Dh].
Now if g, h € [f], then there exists some open set U C M such that g|y = h|y. Then this means that
Dgly = Dh|y and thus Dg and Dh lie the same equivalence class: [Dg] = [Dh].

Step 4: D, is a derivation at a point p.
I want to show that D;, € Derg(C5; ). This means that we need to check R-linearity and that it satisfies
the Leibniz rule.

e R-linearity: Let a € R. I claim that a[f] = [af]. Let g € [f]. Then g|y = f|u for some open set U of
M. This is true if and only if ag|y = af|v thus ag € [af]. Then we have

Dy(alf]) = Dy([af])

= [Daf]

= [D(af)] (Extension is linear)
= [aD(f)] (D is R-linear)
=a[Df]
= aDp([f])

e Leibniz rule: Let [f],[g] € Cf2 . Then we have

Dy((f]-[9]) = Dp([f9])

= [Dfy]
= [D (f9)]
= [fDg +gDJ]
= [f][Dg] + [g][Df]
= [f1Dy([9]) + [9] Dy ([f])

This shows that D,, is a derivation at a point p.

Step 5: ¢ is surjective and thus ¢ is an isomorphism of C'*° (M )-modules.
In step 4, to every D € Derg(C*°(M)) we associated a tangent vector D,,. Let X : M — T'M be defined
as X (p) = D,. It remains to show X is a smooth vector field and that ¢(X) = D.

Let f € C*°(M). We claim that D,([f]) glue together into D f which is a smooth function. Clearly, D f
is a smooth function on M that lies in each [Df] € Cf; . This Df is also unique: Suppose that g is a
globally smooth function that also lies in each [D f] € Cf; . Then there exists some neighbourhood U,
of p such that D f|y = g|y. Butall the U, cover M. Thus Df = g. Itis also clear that ¢(X)(f) = Df for
every f € C™°(M). Thus ¢(X) = D. Materials referenced: [ ] O

This is an unfortunate mess of notation! The X on the domain of the map ¢ is a function M — T'M
while the map f — X f which is typically also indicated by X, sends a C*° (M) function to a C*>° (M)
function.

Finally, let us also recall the definition of smooth 1-forms on M. The definition below is also given in
[ ] P.193
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Definition 4.1.3. Smooth 1-Forms Let M be a smooth manifold. A smooth 1-form on M is a smooth
section w : M — T*M from M to the cotangent bundle. The set of all smooth 1-forms is denoted by
QY(M).

Similar to X(M), there is a vector space structure on Q!(M) which we will not prove and take it for
granted again. Once again, readers can refer to | ]-

Considering the similarities between smooth vector fields and smooth 1-forms in their definition, we
expect them to be somewhat related. Indeed we have the following proposition.

Proposition 4.1.4. Let M be a smooth manifold. On local coordinates, write X = I  a'52- for X €

Derg(C>®(M))andw = Y7, b'dz; forw € QY (M). Define a pairing b : Derg(C°°(M))xQ* (M) — C>(M)
by

(X,w) = w(X) (p = Zbi(p)ai(p)>
i=1
locally. Then this is a dual pairing and hence induces an isomorphism
Q' (M) = Homge (ar) (Derg (C™(M)), C>(M))

Proof. Firstly, note that this definition makes sense. On local coordinates, write X = Y, a' 52 for

X € Derg(C*(M)) and w = Y1, b'dz; for w € Q' (M). Then locally we have that
w(X) = ibkdmk Xn:aji
k=1 N\ o

= Zbkak (dz (3%) = 6i5)
=1

Since each b’ and a’ are smooth, w(X) is also smooth locally and hence w(X) is smooth globally. Now
we show that this is a dual pairing. Suppose first that ¢(X,w) = 0 for all X € Derg(C>(M)). Fix
k€ {1,...,n}. Choose X € Derg(C°(M)) such that a’ = 0 for any j # k and on any chart of M. Then
Y(X,w) = 0 implies b*a* = 0 for a* # 0. Thus b* = 0. Repeating this argument for each k € {1,...,n}

shows that b! = --- = b” = 0 on any chart of M and thus w = 0. A similar method shows that if
P(X,w) =0forallw € Q'(M), then X = 0. We conclude that 1 is a dual pairing and hence induces the
required isomorphism. O

Now that we have the definitions at hand, we turn back to its relation with the module of Kihler dif-
ferentials. In particular, how is the module of Kdhler differentials related to the smooth 1-forms? Recall
that for each manifold, there is an R-algebra of smooth functions on A, given by

C®(M)={f: M — R| fissmooth}
We have the following result:

Proposition 4.1.5. Let M be a smooth manifold. Then we have an isomorphism of modules
(chcoc(M)/R> =~ Q'(M)
Proof. Applying C*° (M) to lemma 2.2.2, we obtain the expression

Homg (Qlcm(M) . C°°(M)) = Derg(C= (M), 0= (M)) = Derg(C>=(M))

This shows that (Qlcoo(M)/R> = Derg(C>(M)).

Now on one hand, taking the C°°(M)-module dual of Derg (C>°(M)) again results in the double dual
(Q}Jx( M) /R)**. On the other hand, by definition, we know that Q' (M), the space of smooth 1-forms, is
the C°° (M )-module dual of Derg (C>°(M)). This means that we have

(QICOC(M)/R) = Q'(M)

Thus we are done. O
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Unfortunately, general modules do not have the nice property that double duals are canonically iso-
morphic to the module itself. So we cannot conclude that Qlcw( M)/R and Q!(M) is “the same” up to
isomorphism. The best that we can do is is a canonical homomorphism B — B** for any A-module B.
[ ] P.239 has a brief section on double duals of a module.

In terms of manifolds, we can prove the existence of the canonical homomorphism easily.

Lemma 4.1.6. Let M be a smooth manifold. Then the exterior derivative d : C> (M) — Q(M) induces a unique
C>°(M)-module homomorphism

¢ : Qoo (aryy — 21 (M)
given by the universal property of the module of Kéhler differentials.

Proof. We know that there is the exterior derivative d : C*° (M) — Q' (M) sending a smooth function on
M to its 1-form. This map is an R-linear map since scalar multiplication of R can be factored outside.
The exterior derivative also satisfies the Leibniz rule. Thus, by the universal property of the module of
Kéhler differentials, the required map exists and is unique. O

One way to think of the failure of bijectivity is to consider what happens to analytic functions. Take
M to be the real line R for simplicity. The function e”, under the exterior derivative gets sent to e”dx.
However, considering the construction of the module of Kahler differentials using the quotient of the
free module, we see that we can only perform the Leibniz rule and linearity rule only a finite amount of
times, whereas e® is a Taylor polynomial of countable many terms.

Notice that since the exterior derivative is R-linear, it is an R-derivation and thus Q!(C°(R)) factors
through Q.. )z by the universal property. In Q' (C™(R)), dext(€”) = €”dext(2). The map Qfw g) 5 —
Q(C*(R)) given by the universal property is defined by d(f) + dex(f). This means that d(e”) and
e”d(x) map to the same element in Q' (C*°(R)). But whether d(e”) and e”d(x) are the same element in
QICOO(R) /r 1s a question of injectivity of this map.

Below is an idea of how Q!(R) is not isomorphic to Qlcm(R) /r When considering R as a manifold. The
following proof is modified and is based on a Maths Overflow discussion: [hes]

Example 4.1.7. Consider R as a smooth manifold. Then Q' (R) is not isomorphic to Q.. (r)/R- N partic-
ular, for f(z) = z and g(x) = €, d(e*) = e”d(z) in Q' (R) but d(e”) and d(z) are linearly independent in

QlCC’C(]R)/]R'

Proof.
Consider the ring C*°(M). Let D be a non-principal ultra filter 7.3.1 on N. Define

I:{fEC’OO(]R)‘{nENf(n)zO}ED}

We show that I is a maximal ideal. It is an ideal since for f, g € I, then
{neN| f(n)+g(n) =0} 2 {neN| f(n) =0} {neN|gn) =0} D

By property 2 and 3 in definition 7.3.1, we have that {n € N | f(n) + g(n) = 0} € Dsothat f + g € I.
Letr ¢ R. Then{n € N|rf(n) =0} = {n € N| f(n) =0} € D when r # 0. When r = 0, we have that
{n € N|rf(n) =0} = N. By property 1 of definition 7.3.1 we have N € D so that either way, rf € I.

Consider the coset f + I for f ¢ I. We want to show that it has an inverse. If f ¢ I, then {n € N | f(n) #
0} € D by the property of an ultrafilter. We can find g € C*°(R) such that g(n) = ﬁ for all n € N such
that f(n) # 0 (See 7.4.2). Then {n € N | f(n) # 0} € D implies that {n € N | f(n)g(n) = 1} € D. This
implies that fg — 1 € I. Thus I is a maximal ideal of C*°(R).

Now K = m is a field. R is embedded as a subfield of K by the field homomorphism defined
by ¢ — (f(z) = ¢) + I. Moreover, [f(z) = z] and [g(xz) = €] in K are algebraically independent.
Indeed, if p(a,b) = 3, ; u;ja't’ is a polynomial in R[z, y], we have that p([z], [¢*]) € I if and only if
{u € R | p(u,e*) = 0} € D. But p is a polynomial and so can only has at most a finite number of
solutions. This means that {u € R | p(u,e*) = 0} is finite. But then this set cannot be in D because
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Filter contains finite sets if and only if it is principal by 7.3.6). Thus p([z], [¢*]) ¢ I and hence they are al-
gebraically independent. Choose a transcendence basis S = {[f(z) = ], [¢(x) = €"], 23, 24, ... } for K/R.

We now have the following extension of fields:
R<R(S) <K

Any R-derivation d on R(S) is uniquely determined its values on S. This fact is given in | ] Ch2.17
Example 4. In particular we can choose the values that d([x]) and d([e*]) take such that they are lin-
early independent. Since S is a transcendence basis, K /R(S) is an algebraic extension. It is more over
separable since K is a field extension of R which has characteristic 0. By 3.1.3, Derg(g)(K) = 0. This
means that any R-derivation on R(S) can be extended uniquely to K. Indeed, if di, ds are extensions of
an R-derivation d over R(S), then d; — ds is an R(.S)-derivation so that

di —dy € DerR(S)(K) =0
which implies that d; = da.

Now let d : R(S) — R(S) be an R-derivation. By the above digression it can be extended uniquely to
an R-derivation d : K — K. Denote p : C*(R) — @ = K the C*°(R)-linear projection map and
in particular is an R-linear map. Now consider the map D = d o p. Since d and p are R-linear, D is
R-linear. Also, since p is C*°(R)-linear and d satisfies the Leibniz rule, we conclude that D also satisfies
the Leibniz rule. So we now have an R-derivation D : C*°(R) — K. By the universal property of the
module of Kihler differentials, we obtain a factorization

C=(R) —— QL. (R)/R

|
131
D 1

K
where d* denotes the universal derivation associated with Qlcoo (R)/R"

By the above digression, D(z) and D(e”) are linearly independent in K. But this means that d*(z) and
d“(e®) are linearly independent in Qlcm(R) /r- Because otherwise, if they are linearly dependent, then

q(d“(z)) = D(x) and ¢(d"(e*)) = D(e”) would have linear relations, a contradiction. O

In terms of the global constructs on a manifolds, we have the following diagram
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’ d
Construct the module
- Dual
00 , ualizes to 1
Der(C’ (M)) < Qcoo(M)/R
Exterior Derivative
Dualize again Canonical Hom
Dual by Definition
1 %ok
(Qcoo (M)/R)
QM)
where Der(C*(M)) are the smooth vector fields and Q' (M) are the smooth 1-forms. By [ ], the

isomorphism does not occur frequently. One such criteria for isomorphism is for Qlcoc( My/r tobea
finitely generated projective module.

As a final note, by considering C*°(—) as a sheaf of algebras on a manifold M, we have a completely
analogous result, such as

QN(U) & Homeee 1)/ (Dera (C(U), ()

This leads to the natural question of whether this generalizes well into the germs of the sheaf. Namely,
can we identify similar isomorphisms as above for tangent spaces and cotangent spaces? The following
subsection will extend on this.

4.2 The Local Case: Tangent Spaces and Cotangent Spaces

While we have seen the connection between globally smooth 1-forms and the module of Kdhler differ-
entials, we have yet to see the connection locally. Analogous to the global constructions where smooth
vector fields are equal to Derg(C*°(M)) and smooth 1-forms are equal to Der(C*°(M))*, we can also
define tangents and cotangent vectors in a similar fashion. A crucial fact is the following.
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Proposition 4.2.1. Let M be a smooth manifold. Then C3; , is a local ring with maximal ideal

myp ={f €Cyj, | f(p) =0}

Proof. m,, is clearly an ideal since f,g € m, means that there is some neighbourhood U; for which
f(p) = 0 and some neighbourhood U, for which g(p) = 0. This implies f(p) + g(p) = 0 on any open set
W CcUyNU,. Alsor € Cg; , implies 7(p) f(p) = 0 in Uy since f(p) = 0.

To see that this ideal is maximal, notice that cosets of m, are exactly of the form =z + m, = {f €
C3tplf(p) = x} for x € R. So we have

Citp ~ R
myp
which is a field.
This maximal ideal is clearly unique since it consists precisely of its non-units. O

The standard definition of the tangent space is given in terms of the above local ring and derivations.
The following definition is given in both [ ] and in MA3HS5:

Definition 4.2.2. (Co)Tangent Spaces Let M be a smooth manifold. Let p € M. The tangent space of M
atpis
T,M = Derg(C3; ,,,R)

The cotangent space of M at p is the vector space dual of the tangent space, denoted 7, M.

Notice that in the definition of Der 4 (B, M) in ??, we require that M is a B-module. So how isRa Cfj -

module? The answer lies in 4.2.1. It say that R = % so that R can be thought of as the quotient ring

of Cf; ,, which is where the module structure of C7 , comes from.

Similar to 4.1.5 where there is a relation between vector fields and differential 1-forms (global versions
of tangent spaces and cotangent spaces), we can also establish a connection between the (co)tangent
space and module of Kahler differentials.

Proposition 4.2.3. Let M be a smooth manifold and p € M be a point. Then
* ~ Ol
Tp M = chov?,p/R ®Ci§$p R
is the cotangent space of M at p.

Proof. Using 3.2.1, we obtain an isomorphism m,, /m? = Qéﬁp/R@CﬁpRWhere m, ={fe€Cx, | flp) =
0}. Define a pairing
¢: 2 X T,M - R
m

P
by ¢(f, X,) = X, f. We show that this is a dual pairing. Suppose that ¢(f, X,) = 0 for all X,, € T,,M.
By Taylor’s theorem (Theorem C.15in [ 1), we have that on a local chart,

F@) = £+ S 2L - o)+ > wi) - )

k=1

where each u; are C™ in the chart and u;(p) = 0. But since f € m,/m?, this means that f(p) = 0.
Together with X, f = 0, we are left with f being identified in m,,/m2 as > _;'_, u;(x)(x; — p;). But each

u;(x) and x; — p; lie in m,, implies that f € m?.

Now suppose that ¢(f, X,,) = 0forall f € m,/m?. Inlocal coordinates this means that

for each a, being C*°, dependent on X . Then in particular, the function u;(z) = x; —p; defined locally on

p lies in m,, with only non zero partial derivative being 2. Substituting this into the expression, we get
ai% = 0. This leaves us with a; = 0. Repeating the argument for each i, we see thata; =--- =a,, =0
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which means that X, = 0.

The dual pairing then implies that the cotangent space is given by

and so we conclude.

O

Given a smooth manifold M and its cotangent bundle p : T*M — M, for any point x on the manifold
we can obtain its cotangent space by p~! (). The above proposition shows that we can use the module

of Kéhler differentials to recover the cotangent space as well.
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5 Conclusion

5.1 What we have done

In the first part, we gave a number of isomorphic constructions of the module of Kéhler differentials.
We have also seen some of its first results, namely the first and second exact sequences and used them
to compute the module of Kdhler differentials of coordinate rings.

In the second part, we have seen from 3.2.1 that we can recover the cotangent space from the module
of Kédhler differentials, showing that it bears similarity with the smooth 1-forms / cotangent bundle on
manifolds. We also used the module to find the dimension of the cotangent spaces. There is also a brief
discussion on the relation of the module of Kéhler differentials and separable field extensions.

However in the last part, we then showed that it is only the double dual that actually resembles the
smooth 1-forms in the case of manifolds. Nonetheless, we are able to at least recover the classical cotan-
gent space of a variety using the localization of its coordinate ring into the maximal ideal corresponding
to the point. In fact, | ] does show that this construction can be made into the relative cotangent
sheaf by the tilde construction (2} /y)~ and thus works well with schemes. There is a brief collection of
materials relating to this sheaf from | 11 Jand [ ]

5.2 Looking Forward

There are many more ways of working with the sheaf of Kahler differentials. In the theory of manifolds,
we use the algebra of smooth differential forms together with the exterior derivative to form a cochain
complex. This then gives the de Rham cohomology of a smooth manifold. We can also do the same for
Kéhler differentials. Namely, by constructing the exterior algebra of the module of Kdhler differentials
and extending the the universal derivation, we also obtain a cochain complex which gives us a cohomol-

ogy.

Given the wide deployment of scheme theory in algerbaic geometry, one can also turn Kahler differen-
tials into a sheaf. This is done by mimicking the construction in proposition 2.2.4. Interested readers are
referred to | ]and [ ].

Throughout our journey, we have also established some connection between the module of Kéhler differ-
entials and field theory. Separability in fields of characteristic 0 is characterized by the fact that minimal
polynomials and its formal derivative is coprime. Intuitively it makes sense for the module of Kéhler
differentials is related to this notion since they both are related to derivatives. Advanced treatment of
the relationship can be found in [ 11 ]and [ ]-

We have omitted the fact that Q' works well between coproducts and coequalizers in the category of

algebras over a fixed ring R. [ ] proves the two special cases of colimits (coproducts and coequal-
izers), thus proving that the functor

F : Algebra, — Modr

where T is the colimit of a diagram in Algebra,, defined by S — T ®g Qf /g and

(0:8—8)— (1®D<p T ®s (S @5 Uy ) — T@ng/R)
preserves colimits. As suggested in section 3.1, this allows the characterization of separability to be ex-
tended from the case of finite extensions to algebraic extensions since algebraic extensions are colimits

of its finite subextensions. There are also functorial properties of Q' in which [ ] contains.

Let Rbe aring and let M be an R-module. Define the Hoschild complex to be the chain complex C(R, M)
given as follows.

e MR 4 MR 4 @RS ... S MR —— M —— 0
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The map d is defined by d = Y. ,(—1)'d; where d; : M ® R®" — M @ R®"~! is given by the fol-
lowing formula.

e Ifi =0,thendy(m@TM @ - Q1) =Mri@ra @ -+ @1y
e Ifi=n,thend,(MRTM ® - ®@1p) =ryMAOT @ - @Tp_1
e Otherwise, thend;(m @M @ - Q7)) =MATL Q@ - @ TiTi41 @+ @ rp_q

The cohomology of this cochain complex is called Hochschild cohomology and is denoted by HH"(R; M).
It is a direct generalization of group cohomology. The Hochschild-Kostant-Rosenberg theorem states
that when we choose M = A a smooth algebra over a field R = k, then we obtain an isomorphism

HH'(R; M) = Q)

More generally, by wedging the module of Kahler differentials n times with itself, we obtain an isomor-
phism between the wedge and the nth Hochschild cohomology. This ties in the use of the module in
Algebraic Topology and is closely related to the trace map and K-theory. Interested readers are referred

to [ ].
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7 Appendix

7.1 Brief Section on Modules
In this section we collect some theorems on modules that will prove itself to be useful later. All rings are

assumed to be commutative with 1 # 0.

The first half of this section will consists of theorems related to the set of all R-module homomorphisms
Homp (M, N) for M, N R-modules. The second half is dedicated to tensor products and its relation to
various constructs of modules. There will also be theorems related to free modules closer to the end.

Theorem 7.1.1. Let R be a ring and M, N be R-modules. Then the set
Homp(M,N)={f: M — N|f is an R-module homomorphism}

is an R-module.

Proof. Let f,g € Hompr(M, N). Define f+¢ : M — N by m — f(m)+g(m). f+gisindeed an R-module
homomorphism since

e Addition is preserved: For m;,mq € M,

(f + 9)(m1 +m2) = f(m1 +m2) + g(mq +ma2)
= f(ma) + f(ma2) + g(m1) + g(m2)
= (f+g)(m1) + (f + g)(m2)

e Scalar multiplication is preserved: For r € Rand m € M,

(f +9)(r-m) = f(r-m)+g(r-m)
=7 f(m)+r-g(m)
=7r-(f+9)(m)

This shows that this operation is closed under Hompg (M, N).
This operation also allows Hompg (M, N) to be an abelian group since the axioms are satisfied:

e Associativity: Follows from associativity of addition in M.
o Identity: The zero map 0 since (f + 0)(m) = f(m)+ 0 = f(m) foreachm € M. Thus f +0 = f

o Inverse: The map m +— — f(m) for each m € M is the inverse of f : M — N. Clearly it is equal to
the zero map.

e Abelian: Follows from the fact that M is abelian.

Define an action on Hompz (M, N) by - : R x Homg(M, N) — Hompg(M, N) where r - f is the function
taking m € M tor- f(m). Associativity clearly follows since N is an R-module. The identity 1 also gives
the trivial action. Thus we are done. O

Theorem 7.1.2. Suppose that A, B, C are R modules. Suppose that f : A — Band g : B — C are R-module
homomorphisms. Then the following sequence
A f
is exact if and only if the following sequence
0 —— Homp(C,N) —<— Homg(B, N) ELEN Hompg (A, N)
is exact for every R-module N.

B 25 C 0

Proof. Suppose first that A 1, B % € - 0is exact. Clearly g, is defined as ¢ — ¢ o g and similarly for f,.
To show that g. is injective, suppose that ¢ € ker(g.). Then ¢ o g = 0 which means that im(g) C ker(¢).
Butim(g) = C since C is surjective. This means that C' C ker(¢). Since trivially ker(¢) C C, we have that
ker(¢) = C which means that ¢ is the 0 map and we shown that ker(g..) = 0.
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Now we want to show that im(g.) = ker(f.). Suppose that ¢ € im(g,st). Then there exists ¢ : C — N
such that ¢ o g = ¢. Precomposing with f gives ) o go f = ¢ o f. Butim(g) = ker(f) means that the left
hand side is 0 which means that ¢ o f = 0 and thus ¢ € ker(f.).

Suppose that ¢ € ker(f,). Then ¢ o f = 0. Define ¢ : C' — N by ¥(c) = ¢(b) for any b € B such that
g(b) = c. Clearly ¢ o g = ¢. Showing 1 is well defined completes the prove. b € B always exists for
any c € C since g is surjective. Now suppose that b and b’ are both the preimage of ¢. Then g(b) = g(V)
implies g(b — b') = 0 which means that b — ¥ € ker(g). But ker(g) = im(f) implies b — b’ € im(f).The
first isomorphism theorem tells us that B/im(f) = C since g is surjective. This means that b — b’ lie
in the same coset of B/ im( f) which means that in this isomorphism b and b’ gives the same element c.
This means that 1 is well defined. (Self-note: g takes b € B to ¢ € C but we know that C = B/im(f) so
intrinsically g is well defined in terms of the quotient. The map from C to N is also obvious but we just
have to show that ¢» makes sense with the quotient)

Now suppose that 0 — Homp(C, N) %5 Homp(B, N) EL Hompg(A, N) is exact. We first show that g is
surjective. Pick N = C/im(g) and take ¢ : C' — C/im(g) to be the quotient map v(c) = ¢+ im(g). For
any b € B, we have that ¢(g(b)) = ¢g(b) + im(g) = im(g) which means that ¢ o ¢ = 0 which implies that
1 € ker(g.). But g. being injective means that ¢y = 0 which means that im(g) = C.

Now we want to show that im(f) = ker(g). Take N = C. im(g.) = ker(f.) implies f.(g.(¢)) = 0 for all
¢ : C — N = C which means that ¢ o g o f = 0. Take ¢ to be the identity map. Then g o f = 0 and thus
im(f) C ker(g),

Now again take N = B/im(f). Let ¢ : B — B/im(f) be the projection. Clearly ¢ o f is the zero map
since all of A maps to im(f) in B/im(f). This means that ¢ € ker(f.). But ker(f,) = im(g,) means that
there exists ¢ : C' — B/im(f) such that 1) o ¢ = ¢. This means that ker(g) C ker(¢). But since ¢ is the
projection, we have ker(¢) = im(f) which proves that ker(g) C im(f).

[ ] O

Theorem 7.1.3. Let f : A — B be a ring homomorphism. Let M be an A-module. Let N be a B-module. Then
we have the following isomorphism:

Homp(M ®4 B, N) = Homu (M, N)

Proof. Notice that this is well defined since f is a ring homomorphism taking A to B, N is naturally also
an A module by restriction of scalars. In particular IV is an A module by defining the action on N to be
*: Ax N — N by

re«n=f(r)-n

where f(r) - n is the action of f(r) € Bonn € N.
Define (-)* : Homp(M ®4 B,N) — Hom (M, N) by mapping v : M @4 B — N to
ut(m) =u(m®1)
Similarly, define ()~ : Hom4 (M, N) — Homp(M ®4 B, N) by mapping v : M — N by
v (m®b)=uv(m)-b
Showing that (u™)” = wand (v™)* = v completes the proof.

We have that
(uh) " (meb)=ut(m)-b=um®1)-b

Since N is a B module we have that u(m ® 1) - b = u(m ® b) which means that (u*)~ = u.
We also have that
(’U_)+(m) = ’U_<m X 1) = U(m) .1l = v(m)

which also proves that (vt)™ = v. O
Proposition 7.1.4. Let M be an R-module. Let I be an ideal of R. Then we have

R M
MenT =10

[DF10] P.370
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Proof. Consider the exact sequence
0 I R R/I 0

given by the inclusion map and the projection map. Applying the right exact functor — ® g M, we have
the following exact sequence:

0 —— IR M —— R M —— R/IQp M —— 0

which simplifies to
0 —— I®grM —— M —— R/IQr M —— 0
Now the image of the map I ®@g M is precisely I M. The exactness of the sequence implies that

M R
el M
™o TR
Since the tensor product is commutative in the sense that M ®r N = N ®pr M, we thus obtain the

required result. O

Proposition 7.1.5. Let f : A — B be a ring homomorphism. If M is a free A-module of rank n, then M @ 4 B
is a free B-module of rank n.

Proof. Write M = @"_, A for some indexing set I. Since tensor products distribute over direct sums,
we can perform the distribution n times to obtain

n

PAea B):éB

i=1
and so we are done. O

Proposition 7.1.6. Let M be an finitely generated R-module. Then there exists a free module @, R and a map

éR%M
i=1

such that the map is surjective.

Proof. We take the definition of a finitely generated R-module as: there exists a1, ..., a, € M such that

for all z € M, there exists r1,...,r, € R such that 22:1 rpax. Now it is easy to see that the module
n
& o
k=1
has a surjective map to M simply by (r1,...,7r,) = > p_i TkGk. O

Definition 7.1.7. Trivial Extension Let R be a ring and M an R-module. Define the trivial extension of R
by M to be the additive group R ® M together with multiplication defined as (r, z)(s,y) = (rs, ry + sz)
forr,s € Rand z,y € M. This ring is denoted as R x M. [ ]

Proposition 7.1.8. Let R be a ring and I an ideal of R. Let m be a maximal ideal. If m does not contain I then
1, = R, both as localization of R-modules. If m contains I, then I,,, # R,,.

Proof. Suppose that m does not contain /. Since m is a maximal ideal, R,, is a local ring with maximal
ideal m. Take i € I such thati ¢ m. This is possible since m does not contain I. Then since m is the
unique maximal ideal of R,,, i must be a unit. This means that I,,, contains a unit. Since I is an ideal of
R we have I,,, is an ideal of R,, since localization commutes with quotients. Any ideal that contains a
unit is the whole ring and thus we have that I,,, = R,,.

Now suppose that I C m. Suppose that I,,, = R,,. Since 1 € I,,, we must have 1 = r/s for some r € [
and s € R\ m. By definition of equality, there must exists some ¢t € R\ m such that ts — ti = 0 where ts
and ti € I. Now since R \ m is a multiplicative set, we have that t,s € R\ m implies ts € R \ m. Then
this means that ti € R \ m. A contradiction since this means ti ¢ I even though ¢i € I by definition of
an ideal. O
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7.2 Transcendental Field Extensions
Recall what it means for a field extension to be transcendental. Most of this section refers to [ ].

Definition 7.2.1. Transcendental Field Extensions Let L/K be a field extension. We say that L/K is a
transcendental field extension if there exists an element = € L such that « is transcendental over K. In
other words, x does not satisfy any univariate polynomial with coefficients in K.

Similar to the basis of vector spaces, we can also define a basis for transcendental field extensions. As
one can see, transcendental means that no polynomial relation is satisfied. Thus the concept of linear
independence should also be defined in a similar fashion. This leads to the notion of algebraic indepen-
dence.

Definition 7.2.2. Algebraic Independence Let L/ K be a field extension. We say that a subset B of L is
algebraically independent over K if the elements of B do not satisfy any non-trivial polynomial relations
with coefficients in K.

This definition is slightly different from the one given in | ]. But it is more intuitive to define it this
way. One can also show that the definition in [ ] and the one above are equivalent, which we will
omit here.

Definition 7.2.3. Transcendence Basis Let L/K be a field extension. A transcendence basis of L/K is a
subset B of L such that B is algebraically independent and L/ K (B) is an algebraic extension.

Indeed if S/K(B) is an algebraic extension, it means that we can no longer add any transcendence ele-
ments to our set B, so that B is maximally algebraically independent. We will again, omit the proof here
that any two transcendence basis have the same cardinality.

7.3 Filters, Ultrafilters and Principal Filters

Filters often appear in more set theoretic subjects such as topology, set theory and algebra. Ultrafilters,
one specific type of filter is used to form the ultraproduct of a collection of algebraic structures so that a
lot of weird things will occur that will not appear when one considers only the prototypical examples.

Definition 7.3.1. Filters Let X be a set. A filter 7 of X is a family of subsets of X such that
e XcFand0 ¢ F
elfAec Fand Be F,then ANB e F
e IfAc Fand AC B,then B¢ F

The idea of a filter is to think of the collection F of subsets of X as the collection of all large subsets of
X. Indeed the third condition shows that any larger subset of subset in 7 must also lie in F.

Definition 7.3.2. Ultrafilters Let X be a set. An ultrafilter on X is a filter 7 on X such thatif A C X then
either A or X \ A is an element of F.

Intuitively, ultrafilters on a set X is a maximal filter on the set X. This idea is precisely characterized by
the condition that at least one of A C X and its complement must lie in the filter.

Lemma 7.3.3. Let X be a set. Let F be an ultrafilter. If AU B € F then either A € F or B € F.

Proof. Suppose for a contradiction that both F' and G are not in F. Then by the property of ultrafilter,
X \ Fand X \ G are in F. Then by property 2 of a filter, (X \ F') N (X \ G) € F. This means that
X\(FUG) € F. But X \ (FUG)N (FUG) = 0 € F by the same property so we have reached a
contradiction. O

Principal filters are essentially the smallest filter containing a chosen subset.

Definition 7.3.4. Principal Filters Let X be a set. A principal filter on X is a filter of the form
F={AeP(X)|ADS}

for a fixed subset S of X.
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Lemma 7.3.5. Let X be a set. Then a principal ultrafilter on X is precisely a filter of the form
F={AePX)[A2{p}}
for somep € X.

Proof. It is clear that a filter of the above form is an ultrafilter since {p} € F implies that for any S C X,
either p € Sorp € X \ S so that at least one of S and X \ S lie inF. It is also clearly a principal filter by
definition.

Now suppose that G is an arbitrary principal ultrafilter. Then
G={AcPX)|ADS}

for some fixed subset S of X. I claim that S =, e T Clearly all T € F are such that S C T so we have
S C ﬂTeg T. Now since S € G, we also have

NT= (| T|nscs

Teg Teg\{S}

and so we have equality. It remains to show that S is a singleton. If S is not a singleton, then S = BII C
where neither B nor C' are empty. In particular, B and C are not in G since B,C' C S. By property
of an ultrafilter, X \ B € G. By property 2 of a filter, we have that AN (X \ B) = C € G, which is a
contradiction. O

Finally, we note that only principal filters can have sets in the filter that are finite.

Proposition 7.3.6. Let X be a set. Then an ultrafilter F on X is a principal filter if and only if it contains finite
sets.

Proof. Suppose that F is a principal ultrafilter. Then F clearly contains a finite set. Conversely, suppose
that F is an ultrafilter that contains a finite set S. Then apply 7.3.3 on singleton subsets of S a finite
number of times to obtain that a singleton must be in 7. O

7.4 Supplement to Example 4.1.7

We provide a proof that given a countable set of points in R, there exists a smooth function ¢ : R = R
such that ¢ hits them over N.

We have seen that bump functions can be used to create smooth functions.

Lemma 7.4.1. Let z1, 22 € R with z1 < x9 and a,b € R. Then exists a smooth function f : R — R such that
f((—o0, 1)) = aand f([xa,00)) = b.

Proof. Without loss of generality, we may assume that ¢ = 0 since we can translate the function up by a
and construct a smooth function starting at height 0 and reaching height b — a. By a similar reasoning,
we can scale the function so that without loss of generality, we start at z; = 0 and 2 = 1.

From MA3HS5, we have seen the smooth function

(z) = e~ ifz>0
T =0 ifr<0

Define the function f : R — R by
g(z)
fla)=——~T8
@)= @+ o)
This function is smooth because g is smooth and g is non-zero at the denominator. Also, for z < 0, we
have that f(z) = 0 because g(z) = 0 and g(1 — z) # 0. We have forz > 1, f(z) = 1 since g(1 —z) =0

leaves f(x) = % and g(z) # 0. O

35



Algebraic Differential Forms

Theorem 7.4.2. Let (yi)ken be a sequence in R and (ny,)ken a strictly ascending sequence in N. Then there exists
a function f : R — R such that f(ny) = yx.

Proof. Let yo = 0 for convenience. By the above lemma, we can construct smooth functions f; : R — R
such that f;((—oo,ng—1]) = 0 and fx([nk,o0)) = yx — yx—1. Now define f : R — R by

flz) = Zfzv(x)

We show that this function is smooth by showing that for all + € R, = has a neighbourhood such that
f in that neighbourhood is smooth. (This is reminiscent to defining smooth functions on manifolds,
in our case, the “charts” are neighbourhoods). Notice that since (ny)xren is a strictly ascending infinite
sequence, there exists n, € N such that x < n,. Now for any y € (—o0, n;), we have that f,(y) = 0 for all
s > t by construction. This means that in the domain (—oc0, n;), f becomes a finite sum

nt

fla) =Y fitw)

Since each fi(z) is smooth, f is smooth in this neighbourhood of x. Thus for all z € R there is a neigh-
bourhood of x for which f is smooth.

Now for any &, we have that
k

Fl) = filne) = y& — vo = un

=1

and so we conclude. O
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